Ali Bienemann
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ali Bienemann.
Molecular and Cellular Neuroscience | 2003
Hk Tan; Darren J. Heywood; Gs Ralph; Ali Bienemann; Ah Baker; James B. Uney
The upregulation of TIMP-1 following an excitotoxic injury has recently been hypothesized to be part of a general neuronal response that mediates long-lasting changes involved in tissue reorganization and possibly neuroprotection. In this study we have shown for the first time that within hours of applying TIMP-1 in recombinant form or by adenovirus-mediated gene transfer, neurons are highly protected against excitotoxic injury. Neither TIMP-3 nor a nonsecretable form of TIMP-1 protected neurons. TIMP-1 conferred highly significant protection to hippocampal cells exposed to a wide range of glutamic acid concentrations in both dissociated and organotypic hippocampal cultures. TIMP-1 did not prevent apoptotic cell death or death mediated by chemical ischemia. The observed neuroprotection may be explained by a decrease in calcium influx into neurons following stimulation with glutamate. These findings have a fundamental implication for our understanding of the physiological role of secreted TIMP-1 in the central nervous system.
Molecular and Cellular Neuroscience | 2001
Gs Ralph; Ali Bienemann; J. Ma; Hk Tan; J. Noel; Jeremy M. Henley; James B. Uney
A specific interaction between the AMPA receptor subunits GluR2 and GluR3 and the fusion protein NSF has recently been identified. Disruption of this interaction by adenoviral-mediated expression of a peptide (pep2m) corresponding to the NSF-binding region of GluR2 results in a dramatic reduction in surface expression of AMPA receptors in primary hippocampal neurons. Here we report that expression of pep2m from a recently developed neuronal-specific adenoviral system gave significant neuroprotection to primary CA1-CA3 hippocampal neurons following stimulation with kainate (KA) and this was accompanied by a reduction in Ca(2+) influx. Protection was also observed following glucose deprivation and exposure to ischemic buffer in the absence of any NMDA receptor antagonists. These results provide strong evidence that AMPA receptors play a direct role in mediating postischemic neurotoxicity.
International Journal of Nanomedicine | 2017
Will Singleton; Andrew M. Collins; Ali Bienemann; Clare Killick-Cole; Harry R Haynes; Daniel J. Asby; Craig P. Butts; Marcella Wyatt; Neil Barua; Steven S. Gill
Background The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood–brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED). Materials and methods The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls. Results Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd) ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of panobinostat-loaded nano-micelles was associated with significantly improved survival when compared to controls (n=8 per group; log-rank test, P<0.001). One hundred percent of treated animals survived the 60-day experimental period and had tumour response on post-mortem histological examination. Conclusion CED of nano-micellar panobinostat represents a potential novel therapeutic option for malignant glioma and warrants translation into the clinic.
eNeuro | 2017
Kert Mätlik; Helena Vihinen; Ali Bienemann; Jaan Palgi; Merja H. Voutilainen; Sigrid Booms; Maria Lindahl; Eija Jokitalo; Mart Saarma; Henri J. Huttunen; Mikko Airavaara; Urmas Arumäe
Abstract Cerebral dopamine neurotrophic factor (CDNF) protects the nigrostriatal dopaminergic (DA) neurons in rodent models of Parkinson’s disease and restores DA circuitry when delivered after these neurons have begun to degenerate. These DA neurons have been suggested to transport striatal CDNF retrogradely to the substantia nigra (SN). However, in cultured cells the binding and internalization of extracellular CDNF has not been reported. The first aim of this study was to examine the cellular localization and pharmacokinetic properties of recombinant human CDNF (rhCDNF) protein after its infusion into rat brain parenchyma. Second, we aimed to study whether the transport of rhCDNF from the striatum to the SN results from its retrograde transport via DA neurons or from its anterograde transport via striatal GABAergic projection neurons. We show that after intrastriatal infusion, rhCDNF diffuses rapidly and broadly, and is cleared with a half-life of 5.5 h. Confocal microscopy analysis of brain sections at 2 and 6 h after infusion of rhCDNF revealed its widespread unspecific internalization by cortical and striatal neurons, exhibiting different patterns of subcellular rhCDNF distribution. Electron microscopy analysis showed that rhCDNF is present inside the endosomes and multivesicular bodies. In addition, we present data that after intrastriatal infusion the rhCDNF found in the SN is almost exclusively localized to the DA neurons, thus showing that it is retrogradely transported.
Organic and Biomolecular Chemistry | 2016
Daniel J. Asby; M. G. Radigois; Dharyl C. Wilson; Francesco Cuda; Christina Li Lin Chai; Anqi Chen; Ali Bienemann; Mark E. Light; David C. Harrowven; Ali Tavassoli
Elevation of reactive oxygen species (ROS) is both a consequence and driver of the upregulated metabolism and proliferation of transformed cells. The resulting increase in oxidative stress is postulated to saturate the cellular antioxidant machinery, leaving cancer cells susceptible to agents that further elevate their intracellular oxidative stress. Several small molecules, including the marine natural product cribrostatin 6, have been demonstrated to trigger apoptosis in cancer cells by increasing intracellular ROS. Here, we report the modular synthesis of a series of cribrostatin 6 derivatives, and assessment of their activity in a number of cell lines. We establish that placing a phenyl ring on carbon 8 of cribrostatin 6 leads to increased potency, and observe a window of selectivity towards cancer cells. The mechanism of activity of this more potent analogue is assessed and demonstrated to induce apoptosis in cancer cells by increasing ROS. Our results demonstrate the potential for targeting tumors with molecules that enhance intracellular oxidative stress.
Neuro-oncology | 2018
Will Singleton; Andrew M. Collins; Ali Bienemann; Clare Killick-Cole; Daniel J. Asby; Harry R Haynes; Marcella Wyatt; Lisa Boulter; Steven S. Gill
Neuro-oncology | 2018
Clare Killick-Cole; Ali Bienemann; Will Singleton; Marcella Wyatt; Daniel J. Asby; Lisa Boulter; Harry R Haynes; Neil Barua; Steven S. Gill
Neuro-oncology | 2017
L. Schellhammer; M. Beffinger; A. Parshenkov; Burkhard Becher; Ali Bienemann; N. Granger; Thorsten Buch; J. vom Berg
Neuro-oncology | 2017
Michal Beffinger; Linda Schellhammer; Stanislav Pantelyushin; Samantha K Wall; Ali Bienemann; Nicolas Granger; Thorsten Buch; Johannes vom Berg
Neuro-oncology | 2017
Clare Killick-Cole; Ali Bienemann; Daniel J. Asby; William Singleton; Marcella Wyatt; Lisa Boulter; Neil Barua; Steven S. Gill