Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clare Killick-Cole is active.

Publication


Featured researches published by Clare Killick-Cole.


International Journal of Nanomedicine | 2017

Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model

Will Singleton; Andrew M. Collins; Ali Bienemann; Clare Killick-Cole; Harry R Haynes; Daniel J. Asby; Craig P. Butts; Marcella Wyatt; Neil Barua; Steven S. Gill

Background The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood–brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED). Materials and methods The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls. Results Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd) ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of panobinostat-loaded nano-micelles was associated with significantly improved survival when compared to controls (n=8 per group; log-rank test, P<0.001). One hundred percent of treated animals survived the 60-day experimental period and had tumour response on post-mortem histological examination. Conclusion CED of nano-micellar panobinostat represents a potential novel therapeutic option for malignant glioma and warrants translation into the clinic.


PLOS ONE | 2017

Repurposing the anti-epileptic drug sodium valproate as an adjuvant treatment for diffuse intrinsic pontine glioma

Clare Killick-Cole; William Singleton; Alison Bienemann; Daniel J. Asby; Marcella Wyatt; Lisa Boulter; Neil Barua; Steven S. Gill

Targeting epigenetic changes in diffuse intrinsic pontine glioma (DIPG) may provide a novel treatment option for patients. This report demonstrates that sodium valproate, a histone deacetylase inhibitor (HDACi), can increase the cytotoxicity of carboplatin in an additive and synergistic manner in DIPG cells in vitro. Sodium valproate causes a dose-dependent decrease in DIPG cell viability in three independent ex vivo cell lines. Furthermore, sodium valproate caused an increase in acetylation of histone H3. Changes in cell viability were consistent with an induction of apoptosis in DIPG cells in vitro, determined by flow cytometric analysis of Annexin V staining and assessment of apoptotic markers by western blotting. Subsequently, immunofluorescent staining of neuronal and glial markers was used to determine toxicity in normal rat hippocampal cells. Pre-treatment of cells with sodium valproate enhanced the cytotoxic effects of carboplatin, in three DIPG cell lines tested. These results demonstrate that sodium valproate causes increased histone H3 acetylation indicative of HDAC inhibition, which is inversely correlated with a reduction in cell viability. Cell viability is reduced through an induction of apoptosis in DIPG cells. Sodium valproate potentiates carboplatin cytotoxicity and prompts further work to define the mechanism responsible for the synergy between these two drugs and determine in vivo efficacy. These findings support the use of sodium valproate as an adjuvant treatment for DIPG.


Histopathology | 2017

The transcription factor PPARalpha is overexpressed and is associated with a favourable prognosis in IDH-wildtype primary glioblastoma

Harry R Haynes; Paul White; Kelly M Hares; Juliana Redondo; Kevin C Kemp; William Singleton; Clare Killick-Cole; Jonathan R Stevens; Krishnakumar Garadi; Sam Guglani; Alastair Wilkins; Kathreena M. Kurian

PPARα agonists are in current clinical use as hypolipidaemic agents and show significant antineoplastic effects in human glioblastoma models. To date however, the expression of PPARα in large‐scale glioblastoma datasets has not been examined. We aimed to investigate the expression of the transcription factor PPARα in primary glioblastoma, the relationship between PPARα expression and patients’ clinicopathological features and other molecular markers associated with gliomagenesis.


Journal of Clinical Pathology | 2018

Evaluation of the quality of RNA extracted from archival FFPE glioblastoma and epilepsy surgical samples for gene expression assays

Harry R Haynes; Clare Killick-Cole; Kelly M Hares; Juliana Redondo; Kevin C Kemp; Karwan A Moutasim; Claire Faulkner; Alastair Wilkins; Kathreena M. Kurian

Aims Histopathological tissue samples are being increasingly used as sources of nucleic acids in molecular pathology translational research. This study investigated the suitability of glioblastoma and control central nervous system (CNS) formalin-fixed paraffin embedded (FFPE) tissue-derived RNA for gene expression analyses. Methods Total RNA was extracted from control (temporal lobe resection tissue) and glioblastoma FFPE tissue samples. RNA purity (260/280 ratios) was determined and RNA integrity number (RIN) analysis was performed. RNA was subsequently used for RT-qPCR for two reference genes, 18S and GAPDH. Results Reference gene expression was equivalent between control and glioblastoma tissue when using RNA extracted from FFPE tissue, which has key implications for biological normalisation for CNS gene expression studies. There was a significant difference between the mean RIN values of control and glioblastoma FFPE tissue. There was no significant correlation between 260/280 or RIN values versus total RNA yield. The age of the tissue blocks did not influence RNA yield, fragmentation or purity. There was no significant correlation between RIN or 260/280 ratios and mean qPCR cycle threshold for either reference gene. Conclusions This study showed that routinely available CNS FFPE tissue is suitable for RNA extraction and downstream gene expression studies, even after 60 months of storage. Substantial RNA fragmentation associated with glioblastoma and control FFPE tissue blocks did not preclude downstream RT-qPCR gene expression analyses. Cross validation with both archival and prospectively collated FFPE specimens is required to further demonstrate that CNS tissue blocks can be used in novel translational molecular biomarker studies.


Journal of Neurosurgery | 2018

The distribution, clearance, and brainstem toxicity of panobinostat administered by convection-enhanced delivery

William Singleton; Alison Bieneman; Max Woolley; David Johnson; Owen T. Lewis; Marcella Wyatt; Stephen J. P. Damment; Lisa Boulter; Clare Killick-Cole; Daniel J. Asby; Steven S. Gill

OBJECTIVE The pan-histone deacetylase inhibitor panobinostat has preclinical efficacy against diffuse intrinsic pontine glioma (DIPG), and the oral formulation has entered a Phase I clinical trial. However, panobinostat does not cross the blood-brain barrier in humans. Convection-enhanced delivery (CED) is a novel neurosurgical drug delivery technique that bypasses the blood-brain barrier and is of considerable clinical interest in the treatment of DIPG. METHODS The authors investigated the toxicity, distribution, and clearance of a water-soluble formulation of panobinostat (MTX110) in a small- and large-animal model of CED. Juvenile male Wistar rats (n = 24) received panobinostat administered to the pons by CED at increasing concentrations and findings were compared to those in animals that received vehicle alone (n = 12). Clinical observation continued for 2 weeks. Animals were sacrificed at 72 hours or 2 weeks following treatment, and the brains were subjected to neuropathological analysis. A further 8 animals received panobinostat by CED to the striatum and were sacrificed 0, 2, 6, or 24 hours after infusion, and their brains explanted and snap-frozen. Tissue-drug concentration was determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). Large-animal toxicity was investigated using a clinically relevant MRI-guided translational porcine model of CED in which a drug delivery system designed for humans was used. Panobinostat was administered at 30 μM to the ventral pons of 2 juvenile Large White-Landrace cross pigs. The animals were subjected to clinical and neuropathological analysis, and findings were compared to those obtained in controls after either 1 or 2 weeks. Drug distribution was determined by LC-MS/MS in porcine white and gray matter immediately after CED. RESULTS There were no clinical or neuropathological signs of toxicity up to an infused concentration of 30 μM in both small- and large-animal models. The half-life of panobinostat in rat brain after CED was 2.9 hours, and the drug was observed to be distributed in porcine white and gray matter with a volume infusion/distribution ratio of 2 and 3, respectively. CONCLUSIONS CED of water-soluble panobinostat, up to a concentration of 30 μM, was not toxic and was distributed effectively in normal brain. CED of panobinostat warrants clinical investigation in patients with DIPG.


Neuro-oncology | 2016

NS-21MULTI-CATHETER INTERMITTENT CONVECTION-ENHANCED DELIVERY OF CARBOPLATIN AS A TREATMENT FOR DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG): PRE-CLINICAL RATIONALE AND EARLY CLINICAL EXPERIENCE

William Singleton; Neil Barua; James Morgan; Alison Bienemann; Clare Killick-Cole; Daniel J. Asby; Richard J. Edwards; Stephen P. Lowis; Steven S. Gill


Neuro-oncology | 2018

The transcription factor PPAR (Peroxisome Proliferator-activated Receptor) alpha is overexpressed and is associated with a favourable prognosis in IDH-wildtype primary glioblastoma

Harry R Haynes; Paul White; Kelly M Hares; Julia Redondo; Kevin C Kemp; Will Singleton; Clare Killick-Cole; Jonathan Stevens; Krishnakumar Garadi; Sam Guglani; Alistair Wilkins; Kathreena M. Kurian


Neuro-oncology | 2018

Convection enhanced delivery of tri-block copolymer nano-micelles: a method of direct intraparenchymal water-insoluble drug delivery for the treatment of high-grade glioma

Will Singleton; Andrew M. Collins; Ali Bienemann; Clare Killick-Cole; Daniel J. Asby; Harry R Haynes; Marcella Wyatt; Lisa Boulter; Steven S. Gill


Neuro-oncology | 2018

Preclinical analysis of sodium valproate for the treatment of pediatric diffuse intrinsic pontine glioma and adult glioblastoma

Clare Killick-Cole; Ali Bienemann; Will Singleton; Marcella Wyatt; Daniel J. Asby; Lisa Boulter; Harry R Haynes; Neil Barua; Steven S. Gill


Cancer management and research | 2018

Combined use of CDK4/6 and mTOR inhibitors induce synergistic growth arrest of diffuse intrinsic pontine glioma cells via mutual downregulation of mTORC1 activity

Daniel J. Asby; Clare Killick-Cole; Lisa Boulter; William Singleton; Claire A Asby; Marcella Wyatt; Neil Barua; Alison Bienemann; Steven S. Gill

Collaboration


Dive into the Clare Killick-Cole's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge