Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ali Fattaey is active.

Publication


Featured researches published by Ali Fattaey.


Science | 1996

An Adenovirus Mutant That Replicates Selectively in p53- Deficient Human Tumor Cells

James R. Bischoff; David Kirn; Angelica Williams; Carla Heise; Sharon Horn; Mike Muna; Lelia Ng; Julie Nye; Adam Sampson-Johannes; Ali Fattaey; Frank McCormick

The human adenovirus E1B gene encodes a 55-kilodalton protein that inactivates the cellular tumor suppressor protein p53. Here it is shown that a mutant adenovirus that does not express this viral protein can replicate in and lyse p53-deficient human tumor cells but not cells with functional p53. Ectopic expression of the 55-kilodalton EIB protein in the latter cells rendered them sensitive to infection with the mutant virus. Injection of the mutant virus into p53-deficient human cervical carcinomas grown in nude mice caused a significant reduction in tumor size and caused complete regression of 60 percent of the tumors. These data raise the possibility that mutant adenoviruses can be used to treat certain human tumors.


Cell | 1992

A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F

Kristian Helin; Jacqueline A. Lees; Marc Vidal; Nicholas J. Dyson; Ed Harlow; Ali Fattaey

The retinoblastoma protein (pRB) plays an important role in the control of cell proliferation, apparently by binding to and regulating cellular transcription factors such as E2F. Here we describe the characterization of a cDNA clone that encodes a protein with properties of E2F. This clone, RBP3, was identified by the ability of its gene product to interact with pRB. RBP3 bound to pRB both in vitro and in vivo, and this binding was competed by viral proteins known to disrupt pRB-E2F association. RBP3 bound to E2F recognition sequences in a sequence-specific manner. Furthermore, transient expression of RBP3 caused a 10-fold transactivation of the adenovirus E2 promoter, and this transactivation was dependent on the E2F recognition sequences. These properties suggest that RBP3 encodes E2F, or an E2F-like protein.


Molecular and Cellular Biology | 1993

Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein.

Kristian Helin; Ed Harlow; Ali Fattaey

Loss of a functional retinoblastoma tumor suppressor gene product, pRB, is a key step in the development of many human tumors. pRB is a negative regulator of cell proliferation and appears to participate in control of entry into the S phase of the cell cycle. The recent demonstration that pRB binds to transcription factor E2F has provided a model for the mechanism of pRB-mediated growth regulation. Since adenovirus E1A proteins dissociate the pRB-E2F complexes and stimulate E2F-dependent transcription, it has been suggested that pRB inhibits E2F transactivation. Although some evidence for this hypothesis has been provided, it has not been possible to determine the mechanism of pRB-mediated inhibition of E2F transactivation. In this study, we constructed mutants of E2F-1 that do not bind to pRB yet retain the ability to transactivate the adenovirus E2 promoter through E2F DNA-binding sites. We demonstrated that transactivation mediated by the wild-type E2F-1 protein was inhibited by overexpression of wild-type pRB but not by a naturally occurring mutant of pRB. Transactivation mediated by mutants of E2F-1 which do not bind to pRB was not affected by overexpression of wild-type pRB. Furthermore, when the E2F-1 transactivation domain was fused to the GAL4 DNA-binding domain, pRB inhibited GAL4-E2F-1 transactivation through GAL4 sites. Expression of pRB did not inhibit transactivation mediated by GAL4-E2F-1 mutant constructs which were devoid of pRB binding. In conclusion, these data demonstrate that pRB inhibits E2F-dependent transactivation by direct protein-protein interaction.


Journal of Biological Chemistry | 1997

HUMAN MYT1 IS A CELL CYCLE-REGULATED KINASE THAT INHIBITS CDC2 BUT NOT CDK2 ACTIVITY

Robert N. Booher; Patricia S. Holman; Ali Fattaey

Activation of the Cdc2·cyclin B kinase is a pivotal step of mitotic initiation. This step is mediated principally by the dephosphorylation of residues threonine 14 (Thr14) and tyrosine 15 (Tyr15) on the Cdc2 catalytic subunit. In several organisms homologs of the Wee1 kinase have been shown to be the major activity responsible for phosphorylating the Tyr15 inhibitory site. A membrane-bound kinase capable of phosphorylating residue Thr14, the Myt1 kinase, has been identified in the frog Xenopus laevis and more recently in human. In this study, we have examined the substrate specificity and cell cycle regulation of the human Myt1 kinase. We find that human Myt1 phosphorylates and inactivates Cdc2-containing cyclin complexes but not complexes containing Cdk2 or Cdk4. Analysis of endogenous Myt1 demonstrates that it remains membrane-bound throughout the cell cycle, but its kinase activity decreased during M phase arrest, when Myt1 became hyperphosphorylated. Further, Cdc2·cyclin B1 was capable of phosphorylating Myt1 in vitro, but this phosphorylation did not affect Myt1 kinase activity. These findings suggest that human Myt1 is negatively regulated by an M phase-activated kinase and that Myt1 inhibits mitosis due to its specificity for Cdc2·cyclin complexes.


Cancer Cell | 2002

Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents

Leisa Johnson; Annie Shen; Larry Boyle; John Kunich; Kusum Pandey; Marilyn Lemmon; Terry Hermiston; Marty Giedlin; Frank McCormick; Ali Fattaey

We have engineered a human adenovirus, ONYX-411, that selectively replicates in human tumor cells, but not normal cells, depending upon the status of their retinoblastoma tumor suppressor protein (pRB) pathway. Early and late viral gene expression as well as DNA replication were significantly reduced in a functional pRB-pathway-dependent manner, resulting in a restricted replication profile similar to that of nonreplicating adenoviruses in normal cells both in vitro and in vivo. In contrast, the viral life cycle and tumor cell killing activity of ONYX-411 was comparable to that of wild-type adenovirus following infection of human tumor cells in vitro as well as after systemic administration in tumor-bearing animals.


Molecular and Cellular Biology | 1993

Independent regions of adenovirus E1A are required for binding to and dissociation of E2F-protein complexes.

Ali Fattaey; Ed Harlow; Kristian Helin

The transcription factor E2F is present in independent complexes with the product of the retinoblastoma susceptibility gene, pRB, and a related gene product, p107, in association with the cyclin A-cdk2 or the cyclin E-cdk2 kinase complex. pRB and p107 can negatively regulate E2F activity, since overexpression of pRB or p107 in cells lacking a functional pRB leads to the repression of E2F activity. The products of the adenovirus E1A gene can disrupt E2F complexes and result in free and presumably active E2F transcription factor. The regions of E1A required for this function are also essential for binding to a number of cellular proteins, including pRB and p107. Through the use of a number of glutathione S-transferase fusion proteins representing different regions of E1A, as well as in vivo expression of E1A proteins containing deletions of either conserved region 1 (CR1) or CR2, we find that CR2 of E1A can form stable complexes with E2F. E1A proteins containing both CR1 and CR2 also associate with E2F, although the presence of these proteins results in the release of free E2F from its complexes. In vitro reconstitution experiments indicate that E1A-E2F interactions are not direct and that pRB can serve to facilitate these interactions. Complexes containing E1A, p107, cyclin A, and E2F were identified in vivo, which indicates that E1A may associate with E2F through either p107 or pRB. Peptide competition experiments demonstrate that the pRB-binding domain of the human E2F-1 protein can compete with the CR1 but not CR2 domain of E1A for binding to pRB. These results indicate that E1A CR1 and E2F-1 may bind to the same or overlapping sites on pRB and that E1A CR2 binds to an independent region. On the basis of our results, we propose a two-step model for the release of E2F from pRB and p107 cellular proteins.


Current Opinion in Genetics & Development | 1999

CDK INHIBITION AND CANCER THERAPY

Michelle D. Garrett; Ali Fattaey

The cell-division cycle is a tightly controlled process that is regulated by the cyclin/CDK family of protein kinase complexes. Stringent control of this process is essential to ensure that DNA synthesis and subsequent mitotic division are accurately and coordinately executed. There is now strong evidence that CDKs, their regulators, and substrates are the targets of genetic alteration in many human cancers. As a result of this, the CDKs have been targeted for drug discovery and a number of small molecule inhibitors of CDKs have been identified.


Journal of Virology | 2001

Analyses of Single-Amino-Acid Substitution Mutants of Adenovirus Type 5 E1B-55K Protein

Yuqiao Shen; Galila Kitzes; Julie Nye; Ali Fattaey; Terry W. Hermiston

ABSTRACT The E1B-55K protein plays an important role during human adenovirus type 5 productive infection. In the early phase of the viral infection, E1B-55K binds to and inactivates the tumor suppressor protein p53, allowing efficient replication of the virus. During the late phase of infection, E1B-55K is required for efficient nucleocytoplasmic transport and translation of late viral mRNAs, as well as for host cell shutoff. In an effort to separate the p53 binding and inactivation function and the late functions of the E1B-55K protein, we have generated 26 single-amino-acid mutations in the E1B-55K protein. These mutants were characterized for their ability to modulate the p53 level, interact with the E4orf6 protein, mediate viral late-gene expression, and support virus replication in human cancer cells. Of the 26 mutants, 24 can mediate p53 degradation as efficiently as the wild-type protein. Two mutants, R240A (ONYX-051) and H260A (ONYX-053), failed to degrade p53 in the infected cells. In vitro binding assays indicated that R240A and H260A bound p53 poorly compared to the wild-type protein. When interaction with another viral protein, E4orf6, was examined, H260A significantly lost its ability to bind E4orf6, while R240A was fully functional in this interaction. Another mutant, T255A, lost the ability to bind E4orf6, but unexpectedly, viral late-gene expression was not affected. This raised the possibility that the interaction between E1B-55K and E4orf6 was not required for efficient viral mRNA transport. Both R240A and H260A have retained, at least partially, the late functions of wild-type E1B-55K, as determined by the expression of viral late proteins, host cell shutoff, and lack of a cold-sensitive phenotype. Virus expressing R240A (ONYX-051) replicated very efficiently in human cancer cells, while virus expressing H260A (ONYX-053) was attenuated compared to wild-type virus dl309 but was more active than ONYX-015. The ability to separate the p53-inactivation activity and the late functions of E1B-55K raises the possibility of generating adenovirus variants that retain the tumor selectivity of ONYX-015 but can replicate more efficiently than ONYX-015 in a broad spectrum of cell types.


Progress in cell cycle research | 1997

Myt1: a Wee1-type kinase that phosphorylates Cdc2 on residue Thr14

Ali Fattaey; Robert N. Booher

Most somatic cell division cycles contain a gap period (G2 phase) between the completion of DNA synthesis and the initiation of mitosis. This delay of mitotic entry is controlled, at least in part, by the repression of Cdc2 kinase activity by the phosphorylation of two conserved residues (Thr14 and Tyr15) within the ATP-binding pocket of the Cdc2 catalytic subunit. The kinases responsible for these two phosphorylation events include the Myt1 and Wee1 kinases, which phosphorylate Cdc2 on Thr14 and Tyr15, respectively. In this discussion, we summarise our current knowledge of the Myt1 kinase and its regulation of Cdc2 kinase activity during the G2-to -M phase transition.


Journal of Virology | 2003

Developing Novel Oncolytic Adenoviruses through Bioselection

Wen Yan; Galila Kitzes; Farid Dormishian; Lynda K. Hawkins; Adam Sampson-Johannes; Josh Watanabe; Jenny Holt; Vivian Lee; Thomas Dubensky; Ali Fattaey; Terry Hermiston; Allan Balmain; Yuqiao Shen

ABSTRACT Mutants of human adenovirus 5 (Ad5) with enhanced oncolytic activity were isolated by using a procedure termed bioselection. Two mutants, ONYX-201 and ONYX-203, were plaque purified from a pool of randomly mutagenized Ad5 that was repeatedly passaged in the human colorectal cancer cell line HT29, and they were subsequently characterized. ONYX-201 and ONYX-203 replicated more rapidly in HT29 cells than wild-type Ad5, and they lysed HT29 cells up to 1,000-fold more efficiently. The difference was most profound when cells were infected at a relatively low multiplicity of infection, presumably due to the compounding effects of multiple rounds of infection. This enhanced cytolytic activity was observed not only in HT29 cells but also in many other human cancer cell lines tested. In contrast, the cytotoxicity of the bioselected mutants in a number of normal primary human cells was similar to that of wild-type Ad5, thus enhancing the therapeutic index (cytotoxicity in tumor cells versus that in normal cells) of these oncolytic agents. Both ONYX-201 and -203 contain seven single-base-pair mutations when compared with Ad5, four of which were common between ONYX-201 and -203. The mutation at nucleotide 8350, shared by both mutant viruses, was shown to be essential for the observed phenotypes. This mutation was mapped to the i-leader region of the major late transcription unit, resulting in the truncation of 21 amino acids from the C terminus of the i-leader protein. This work demonstrates that bioselection is a powerful tool for developing novel tumor-selective oncolytic viruses. Other potential applications of this technology are discussed.

Collaboration


Dive into the Ali Fattaey's collaboration.

Top Co-Authors

Avatar

David W. Fry

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhipei Wu

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Kristian Helin

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge