Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ali Roghanian is active.

Publication


Featured researches published by Ali Roghanian.


Clinical Science | 2006

SLPI and elafin: one glove, many fingers

Steven E. Williams; Thomas I. Brown; Ali Roghanian; Jean-Michel Sallenave

Elafin and SLPI (secretory leucocyte protease inhibitor) have multiple important roles both in normal homoeostasis and at sites of inflammation. These include antiprotease and antimicrobial activity as well as modulation of the response to LPS (lipopolysaccharide) stimulation. Elafin and SLPI are members of larger families of proteins secreted predominantly at mucosal sites, and have been shown to be modulated in multiple pathological conditions. We believe that elafin and SLPI are important molecules in the controlled functioning of the innate immune system, and may have further importance in the integration of this system with the adaptive immune response. Recent interest has focused on the influence of inflamed tissues on the recruitment and phenotypic modulation of cells of the adaptive immune system and, indeed, the local production of elafin and SLPI indicate that they are ideally placed in this regard. Functionally related proteins, such as the defensins and cathelicidins, have been shown to have direct effects upon dendritic cells with potential alteration of their phenotype towards type I or II immune responses. This review addresses the multiple functions of elafin and SLPI in the inflammatory response and discusses further their roles in the development of the adaptive immune response.


Journal of Immunology | 2011

Interaction with FcγRIIB Is Critical for the Agonistic Activity of Anti-CD40 Monoclonal Antibody

Ann L. White; H. T. Claude Chan; Ali Roghanian; Ruth R. French; C. Ian Mockridge; Alison L. Tutt; Sandra V. Dixon; Daniel Ajona; J. Sjef Verbeek; Aymen Al-Shamkhani; Mark S. Cragg; Stephen A. Beers; Martin J. Glennie

A high activatory/inhibitory FcγR binding ratio is critical for the activity of mAb such as rituximab and alemtuzumab that attack cancer cells directly and eliminate them by recruiting immune effectors. Optimal FcγR binding profiles of other anti-cancer mAb, such as immunostimulatory mAb that stimulate or block immune receptors, are less clear. In this study, we analyzed the importance of isotype and FcγR interactions in controlling the agonistic activity of the anti-mouse CD40 mAb 3/23. Mouse IgG1 (m1) and IgG2a (m2a) variants of the parental 3/23 (rat IgG2a) were engineered and used to promote humoral and cellular responses against OVA. The mouse IgG1 3/23 was highly agonistic and outperformed the parental Ab when promoting Ab (10–100-fold) and T cell (OTI and OTII) responses (2- to >10-fold). In contrast, m2a was almost completely inactive. Studies in FcγR knockout mice demonstrated a critical role for the inhibitory FcγRIIB in 3/23 activity, whereas activatory FcγR (FcγRI, -III, and -IV) was dispensable. In vitro experiments established that the stimulatory effect of FcγRIIB was mediated through Ab cross-linking delivered in trans between neighboring cells and did not require intracellular signaling. Intriguingly, activatory FcγR provided effective cross-linking of 3/23 m2a in vitro, suggesting the critical role of FcγRIIB in vivo reflects its cellular distribution and bioavailability as much as its affinity for a particular Ab isotype. In conclusion, we demonstrate an essential cross-linking role for the inhibitory FcγRIIB in anti-CD40 immunostimulatory activity and suggest that isotype will be an important issue when optimizing reagents for clinical use.


Cancer Cell | 2015

Conformation of the Human Immunoglobulin G2 Hinge Imparts Superagonistic Properties to Immunostimulatory Anticancer Antibodies

Ann L. White; H. T. Claude Chan; Ruth R. French; Jane E. Willoughby; C. Ian Mockridge; Ali Roghanian; Christine A. Penfold; Steven G. Booth; Ali Dodhy; Marta E. Polak; Elizabeth A. Potter; Michael R. Ardern-Jones; J. Sjef Verbeek; Peter Johnson; Aymen Al-Shamkhani; Mark S. Cragg; Stephen A. Beers; Martin J. Glennie

Summary Monoclonal antibody (mAb) drugs that stimulate antitumor immunity are transforming cancer treatment but require optimization for maximum clinical impact. Here, we show that, unlike other immunoglobulin isotypes, human IgG2 (h2) imparts FcγR-independent agonistic activity to immune-stimulatory mAbs such as anti-CD40, -4-1BB, and -CD28. Activity is provided by a subfraction of h2, h2B, that is structurally constrained due its unique arrangement of hinge region disulfide bonds. Agonistic activity can be transferred from h2 to h1 by swapping their hinge and CH1 domains, and substitution of key hinge and CH1 cysteines generates homogenous h2 variants with distinct agonistic properties. This provides the exciting opportunity to engineer clinical reagents with defined therapeutic activity regardless of FcγR expression levels in the local microenvironment.


Biochemical Society Transactions | 2006

Human neutrophil elastase inhibitors in innate and adaptive immunity

Paul M. Fitch; Ali Roghanian; Sarah E. M. Howie; J.-M. Sallenave

Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response.


Nature Biotechnology | 2017

In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis

Jatin Roper; Tuomas Tammela; Naniye Malli Cetinbas; Adam Akkad; Ali Roghanian; Steffen Rickelt; Mohammad Almeqdadi; Katherine Wu; Matthias A. Oberli; Francisco J. Sánchez-Rivera; Yoona Park; Xu Liang; George Eng; Martin S. Taylor; Roxana Azimi; Dmitriy Kedrin; Rachit Neupane; Semir Beyaz; Ewa Sicinska; Yvelisse Suarez; James Yoo; Lillian Chen; Lawrence R. Zukerberg; Pekka Katajisto; Vikram Deshpande; Adam J. Bass; Philip N. Tsichlis; Jacqueline A. Lees; Robert Langer; Richard O. Hynes

In vivo interrogation of the function of genes implicated in tumorigenesis is limited by the need to generate and cross germline mutant mice. Here we describe approaches to model colorectal cancer (CRC) and metastasis, which rely on in situ gene editing and orthotopic organoid transplantation in mice without cancer-predisposing mutations. Autochthonous tumor formation is induced by CRISPR-Cas9-based editing of the Apc and Trp53 tumor suppressor genes in colon epithelial cells and by orthotopic transplantation of Apc-edited colon organoids. ApcΔ/Δ;KrasG12D/+;Trp53Δ/Δ (AKP) mouse colon organoids and human CRC organoids engraft in the distal colon and metastasize to the liver. Finally, we apply the orthotopic transplantation model to characterize the clonal dynamics of Lgr5+ stem cells and demonstrate sequential activation of an oncogene in established colon adenomas. These experimental systems enable rapid in vivo characterization of cancer-associated genes and reproduce the entire spectrum of tumor progression and metastasis.


Blood | 2014

Inhibitory FcγRIIb (CD32b) becomes activated by therapeutic mAb in both cis and trans and drives internalization according to antibody specificity

Andrew T. Vaughan; Chisako Iriyama; Stephen A. Beers; Claude H. T. Chan; Sean H. Lim; Emily L. Williams; Vallari Shah; Ali Roghanian; Björn Frendéus; Martin J. Glennie; Mark S. Cragg

A major feature that distinguishes type I from type II anti-CD20 monoclonal antibodies (mAbs) and reduces their therapeutic efficacy is the tendency to internalize from the cell surface. We have shown previously that the extent of internalization correlates with the capacity of type I mAb to simultaneously engage both CD20 and the inhibitory Fcγ receptor, FcγRIIb, in a bipolar configuration. Here, we investigated whether mAbs directed at other B-cell surface receptors also engaged FcγRIIb and whether this interaction promoted internalization. Most mAbs engaged and activated FcγRIIb, with the strength of activation related to the level of mAb bound to the cell surface. However, engagement did not affect internalization of most mAb-ligated receptors, either in cell lines or primary chronic lymphocytic leukemia cells with the exception of CD19 and CD38. Furthermore, at high cell concentrations/density both cis and trans interactions between cell-surface bound mAb and FcγRIIb were evident, but trans interactions did not inhibit type I anti-CD20 mAb-mediated internalization. These data identify that FcγRIIb is engaged by many mAbs in both cis and trans configurations, triggering its activation, but that internalization via FcγRIIb occurs for only a select subset. These findings have implications when designing new antibody-based therapeutics.


Blood | 2015

Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies.

Thomas R.W. Tipton; Ali Roghanian; Robert J. Oldham; Matthew J. Carter; Kerry L. Cox; C. Ian Mockridge; Ruth R. French; Lekh N. Dahal; Patrick J. Duriez; Phillip G. Hargreaves; Mark S. Cragg; Stephen A. Beers

Following the success of rituximab, 2 other anti-CD20 monoclonal antibodies (mAbs), ofatumumab and obinutuzumab, have entered clinical use. Ofatumumab has enhanced capacity for complement-dependent cytotoxicity, whereas obinutuzumab, a type II mAb, lacks the ability to redistribute into lipid rafts and is glycoengineered for augmented antibody-dependent cellular cytotoxicity (ADCC). We previously showed that type I mAbs such as rituximab have a propensity to undergo enhanced antigenic modulation compared with type II. Here we assessed the key effector mechanisms affected, comparing type I and II antibodies of various isotypes in ADCC and antibody-dependent cellular-phagocytosis (ADCP) assays. Rituximab and ofatumumab depleted both normal and leukemic human CD20-expressing B cells in the mouse less effectively than glycoengineered and wild-type forms of obinutuzumab, particularly when human immunoglobulin G1 (hIgG1) mAbs were compared. In contrast to mouse IgG2a, hIgG1 mAbs were ineffective in ADCC assays with murine natural killer cells as effectors, whereas ADCP was equivalent for mouse IgG2a and hIgG1. However, rituximabs ability to elicit both ADCC and ADCP was reduced by antigenic modulation, whereas type II antibodies remained unaffected. These data demonstrate that ADCP and ADCC are impaired by antigenic modulation and that ADCP is the main effector function employed in vivo.


The International Journal of Biochemistry & Cell Biology | 2011

B cells—Masters of the immunoverse

Andrew T. Vaughan; Ali Roghanian; Mark S. Cragg

The immune system involves the complex interplay between many different cell types. Over the last decade, T cells, dendritic cells (DC) and macrophages have all been implicated as the key regulator cells of the immunological response, linking innate and adaptive immunity. The forgotten cell in this discourse has been the B-cell. Long considered as simple antibody production units dictated to by T-cells, recent years have begun to shift this assumption. The discovery that numerous B-cell subsets exist, with specific regulatory functions capable of modulating T-cell and chronic inflammatory responses has revealed a hitherto unappreciated role of B-cells. In particular, these ideas have been developed in light of the surprisingly successful responses delivered in autoimmune settings following depletion of B-cells with the anti-CD20 antibody rituximab. Here we summarise the history of the humble B-cell and discuss some of the key recent findings that lead us to propose it as an important regulator of ongoing immune responses and as such, one of the masters of the immunoverse.


European Journal of Immunology | 2009

Alternative mRNA splicing creates transcripts encoding soluble proteins from most LILR genes

Des C. Jones; Ali Roghanian; Damien P. Brown; Chiwen Chang; Rachel Allen; John Trowsdale; Neil T. Young

Leucocyte Ig‐like receptors (LILR) are a family of innate immune receptors expressed on myeloid and lymphoid cells that influence adaptive immune responses. We identified a common mechanism of alternative mRNA splicing, which generates transcripts that encode soluble protein isoforms of the majority of human LILR. These alternative splice variants lack transmembrane and cytoplasmic encoding regions, due to the transcription of a cryptic stop codon present in an intron 5′ of the transmembrane encoding exon. The alternative LILR transcripts were detected in cell types that express their membrane‐associated isoforms. Expression of the alternative LILRB1 transcript in transfected cells resulted in the release of a soluble ∼65 Kd LILRB1 protein into culture supernatants. Soluble LILRB1 protein was also detected in the culture supernatants of monocyte‐derived DC. In vitro assays suggested that soluble LILRB1 could block the interaction between membrane‐associated LILRB1 and HLA‐class I. Soluble LILRB1 may act as a dominant negative regulator of HLA‐class I‐mediated LILRB1 inhibition. Soluble isoforms of the other LILR may function in a comparable way.


Leukemia | 2016

Genomic disruption of the histone methyltransferase SETD2 in chronic lymphocytic leukaemia

Helen L. Parker; Matthew Jj Rose-Zerilli; Mª José Larrayoz; Ruth Clifford; Jennifer Edelmann; Stuart Blakemore; Jane Gibson; Jun Wang; Viktor Ljungström; Tomasz K. Wojdacz; Tracy Chaplin; Ali Roghanian; Zadie Davis; Anton Parker; Eugen Tausch; S. Ntoufa; Sara Ramos; Pauline Robbe; Reem Alsolami; Andrew Steele; Graham Packham; Ana Eugenia Rodríguez-Vicente; L. Brown; Feargal McNicholl; Francesco Forconi; Andrew R. Pettitt; Peter Hillmen; Martin J. S. Dyer; Mark S. Cragg; Claude Chelala

Histone methyltransferases (HMTs) are important epigenetic regulators of gene transcription and are disrupted at the genomic level in a spectrum of human tumours including haematological malignancies. Using high-resolution single nucleotide polymorphism (SNP) arrays, we identified recurrent deletions of the SETD2 locus in 3% (8/261) of chronic lymphocytic leukaemia (CLL) patients. Further validation in two independent cohorts showed that SETD2 deletions were associated with loss of TP53, genomic complexity and chromothripsis. With next-generation sequencing we detected mutations of SETD2 in an additional 3.8% of patients (23/602). In most cases, SETD2 deletions or mutations were often observed as a clonal event and always as a mono-allelic lesion, leading to reduced mRNA expression in SETD2-disrupted cases. Patients with SETD2 abnormalities and wild-type TP53 and ATM from five clinical trials employing chemotherapy or chemo-immunotherapy had reduced progression-free and overall survival compared with cases wild type for all three genes. Consistent with its postulated role as a tumour suppressor, our data highlight SETD2 aberration as a recurrent, early loss-of-function event in CLL pathobiology linked to aggressive disease.

Collaboration


Dive into the Ali Roghanian's collaboration.

Top Co-Authors

Avatar

Mark S. Cragg

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth R. French

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Johnson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Sjef Verbeek

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge