Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth R. French is active.

Publication


Featured researches published by Ruth R. French.


Journal of Immunology | 2006

The Biological Activity of Human CD20 Monoclonal Antibodies Is Linked to Unique Epitopes on CD20

Jessica L. Teeling; Wendy J.M. Mackus; Luus Wiegman; Jeroen van den Brakel; Stephen A. Beers; Ruth R. French; Tom van Meerten; Saskia B. Ebeling; Tom Vink; Jerry W. Slootstra; Paul Parren; Martin J. Glennie; Jan G.J. van den Winkel

We have previously defined a panel of fully human CD20 mAb. Most of these were unexpectedly efficient in their ability to recruit C1q to the surface of CD20-positive cells and mediate tumor lysis via activation of the classical pathway of complement. This complement-dependent cytotoxicity (CDC) potency appeared to relate to the unusually slow off-rate of these human Abs. However, we now present epitope-mapping data, which indicates that all human mAb bind a novel region of CD20 that may influence CDC potency. Epitope mapping, using both mutagenesis studies and overlapping 15-mer peptides of the extracellular loops of CD20, defined the amino acids required for binding by an extensive panel of mouse and human mAb. Binding by rituximab and mouse CD20 mAb, had an absolute requirement for alanine and proline at positions 170 and 172, respectively, within the large extracellular loop of CD20. Surprisingly, however, all of the human CD20 mAb recognize a completely novel epitope located N-terminally of this motif, also including the small extracellular loop of CD20. Thus, although off-rate may influence biological activity of mAb, another critical factor for determining CDC potency by CD20 mAb appears to be the region of the target molecule they recognize. We conclude that recognition of the novel epitope cooperates with slow off-rate in determining the activity of CD20 Ab in activation of complement and induction of tumor cell lysis.


Nature Medicine | 1999

CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help

Ruth R. French; H.T.C. Chan; Alison L. Tutt; Martin J. Glennie

CD40 is essential in enabling antigen-presenting cells to process and present antigen effectively to T cells. We demonstrate here that when antibody against CD40 is used to treat mice with syngeneic lymphoma, a rapid cytotoxic T-cell response independent of T-helper cells occurs, with tenfold expansion of CD8+ T cells over a period of 5 days. This response eradicates the lymphoma and provides protection against tumor rechallenge without further antibody treatment. Thus, it seems that by treating mice with monoclonal antibody against CD40, we are immunizing against syngeneic tumors. The phenomenon proved reproducible with two antibodies against CD40 (3/23 and FGK-45) in three CD40+ lymphomas (A20, A31 and BCL1) and gave partial protection in one of two CD40– lymphomas (EL4 and Ten1). Although the nature of the target antigens on these lymphomas is unknown, CD8+ T cells recovered from responding mice showed powerful cytotoxic activity against the target B-cell lymphoma in vitro.


Blood | 2010

Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection

Stephen A. Beers; Ruth R. French; H. T. Claude Chan; Sean H. Lim; Timothy C. Jarrett; Regina Mora Vidal; Sahan S. Wijayaweera; Sandra V. Dixon; Hyungjin Kim; Kerry L. Cox; Jonathan P. Kerr; David A. Johnston; Peter Johnson; J. Sjef Verbeek; Martin J. Glennie; Mark S. Cragg

Rituximab, a monoclonal antibody that targets CD20 on B cells, is now central to the treatment of a variety of malignant and autoimmune disorders. Despite this success, a substantial proportion of B-cell lymphomas are unresponsive or develop resistance, hence more potent anti-CD20 monoclonal antibodies (mAbs) are continuously being sought. Here we demonstrate that type II (tositumomab-like) anti-CD20 mAbs are 5 times more potent than type I (rituximab-like) reagents in depleting human CD20 Tg B cells, despite both operating exclusively via activatory Fcgamma receptor-expressing macrophages. Much of this disparity in performance is attributable to type I mAb-mediated internalization of CD20 by B cells, leading to reduced macrophage recruitment and the degradation of CD20/mAb complexes, shortening mAb half-life. Importantly, human B cells from healthy donors and most cases of chronic lymphatic leukemia and mantle cell lymphoma, showed rapid CD20 internalization that paralleled that seen in the Tg mouse B cells, whereas most follicular lymphoma and diffuse large B-cell lymphoma cells were far more resistant to CD20 loss. We postulate that differences in CD20 modulation may play a central role in determining the relative efficacy of rituximab in treating these diseases and strengthen the case for focusing on type II anti-CD20 mAb in the clinic.


Haematologica | 2010

Anti-CD20 monoclonal antibodies – historical and future perspectives

Sean H. Lim; Stephen A. Beers; Ruth R. French; Peter Johnson; Martin J. Glennie; Mark S. Cragg

Antibodies to CD20 have confirmed the hypothesis that monoclonal reagents can be given in vivo to alleviate human diseases. The targeting of CD20 on normal, malignant and auto-immune B-lymphocytes by rituximab has demonstrated substantial benefits for patients with a variety of B-cell lymphomas, as well as some with autoimmune disorders. There has been a notable increase in the survival rates from B-cell lymphoma in the decade since anti-CD20 therapy was introduced.


Blood | 2008

Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation

Stephen A. Beers; Claude H. T. Chan; Sonya James; Ruth R. French; Katherine E. Attfield; Claire M. Brennan; Anupama Ahuja; Mark J. Shlomchik; Mark S. Cragg; Martin J. Glennie

Anti-CD20 monoclonal antibodies (mAbs) are classified into type I (rituximab-like) or type II (tositumomab-like) based on their ability to redistribute CD20 molecules in the plasma membrane and activate various effector functions. To compare type I and II mAbs directly in vivo and maximize Fc effector function, we selected and engineered mAbs with the same mouse IgG(2)a isotype and assessed their B-cell depleting activity in human CD20 transgenic mice. Despite being the same isotype, having similar affinity, opsonizing activity for phagocytosis, and in vivo half-life, the type II mAb tositumomab (B1) provided substantially longer depletion of B cells from the peripheral blood compared with the type I mAb rituximab (Rit m2a), and 1F5. This difference was also evident within the secondary lymphoid organs, in particular, the spleen. Failure to engage complement did not explain the efficacy of the type II reagents because type I mAbs mutated in the Fc domain (K322A) to prevent C1q binding still did not display equivalent efficacy. These results give support for the use of type II CD20 mAbs in human B-cell diseases.


Journal of Immunology | 2011

Interaction with FcγRIIB Is Critical for the Agonistic Activity of Anti-CD40 Monoclonal Antibody

Ann L. White; H. T. Claude Chan; Ali Roghanian; Ruth R. French; C. Ian Mockridge; Alison L. Tutt; Sandra V. Dixon; Daniel Ajona; J. Sjef Verbeek; Aymen Al-Shamkhani; Mark S. Cragg; Stephen A. Beers; Martin J. Glennie

A high activatory/inhibitory FcγR binding ratio is critical for the activity of mAb such as rituximab and alemtuzumab that attack cancer cells directly and eliminate them by recruiting immune effectors. Optimal FcγR binding profiles of other anti-cancer mAb, such as immunostimulatory mAb that stimulate or block immune receptors, are less clear. In this study, we analyzed the importance of isotype and FcγR interactions in controlling the agonistic activity of the anti-mouse CD40 mAb 3/23. Mouse IgG1 (m1) and IgG2a (m2a) variants of the parental 3/23 (rat IgG2a) were engineered and used to promote humoral and cellular responses against OVA. The mouse IgG1 3/23 was highly agonistic and outperformed the parental Ab when promoting Ab (10–100-fold) and T cell (OTI and OTII) responses (2- to >10-fold). In contrast, m2a was almost completely inactive. Studies in FcγR knockout mice demonstrated a critical role for the inhibitory FcγRIIB in 3/23 activity, whereas activatory FcγR (FcγRI, -III, and -IV) was dispensable. In vitro experiments established that the stimulatory effect of FcγRIIB was mediated through Ab cross-linking delivered in trans between neighboring cells and did not require intracellular signaling. Intriguingly, activatory FcγR provided effective cross-linking of 3/23 m2a in vitro, suggesting the critical role of FcγRIIB in vivo reflects its cellular distribution and bioavailability as much as its affinity for a particular Ab isotype. In conclusion, we demonstrate an essential cross-linking role for the inhibitory FcγRIIB in anti-CD40 immunostimulatory activity and suggest that isotype will be an important issue when optimizing reagents for clinical use.


Seminars in Hematology | 2010

CD20 as a Target for Therapeutic Type I and II Monoclonal Antibodies

Stephen A. Beers; Claude H. T. Chan; Ruth R. French; Mark S. Cragg; Martin J. Glennie

The last decade has seen the monoclonal antibody (mAb), rituximab, transform clinical management of many non-Hodgkin lymphomas and more recently provide new opportunities for controlling autoimmune conditions, such as rheumatoid arthritis. Although not yet fully determined, the explanation for this success appears to lie with the inherent properties of its target, CD20, which allow rituximab to recruit potent cytotoxic effectors with unusual efficiency. In this review we detail the properties of CD20 that make it such an effective therapeutic target and describe how different mAbs change the membrane distribution and internalization of CD20 and have distinct modes of cytotoxic activity.


Blood | 2011

Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy

Sean H. Lim; Andrew T. Vaughan; Margaret Ashton-Key; Emily L. Williams; Sandra V. Dixon; Claude H. T. Chan; Stephen A. Beers; Ruth R. French; Kerry L. Cox; Andrew Davies; Kathleen N. Potter; C. Ian Mockridge; David Oscier; Peter Johnson; Mark S. Cragg; Martin J. Glennie

The anti-CD20 mAb rituximab is central to the treatment of B-cell malignancies, but resistance remains a significant problem. We recently reported that resistance could be explained, in part, by internalization of rituximab (type I anti-CD20) from the surface of certain B-cell malignancies, thus limiting engagement of natural effectors and increasing mAb consumption. Internalization of rituximab was most evident in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), but the extent of internalization was heterogeneous within each disease. Here, we show that the inhibitory FcγRIIb on target B cells promotes this process and is largely responsible for the observed heterogeneity across a range of B-cell malignancies. Internalization correlated strongly with FcγRIIb expression on normal and malignant B cells, and resulted in reduced macrophage phagocytosis of mAb-coated targets. Furthermore, transfection of FcγRIIb into FcγRIIb negative Ramos cells increased internalization of rituximab in a dose-dependent manner. Target-cell FcγRIIb promoted rituximab internalization in a cis fashion and was independent of FcγRIIb on neighboring cells. It became phosphorylated and internalized along with CD20:anti-CD20 complexes before lysosomal degradation. In MCL patients, high FcγRIIb expression predicted less durable responses after rituximab-containing regimens. Therefore, target-cell FcγRIIb provides a potential biomarker of response to type I anti-CD20 mAb.


Journal of Biological Chemistry | 2008

Induction of cytosolic calcium flux by CD20 Is dependent upon B cell antigen receptor signaling

Claire A. Walshe; Stephen A. Beers; Ruth R. French; Claude H. T. Chan; Peter Johnson; Graham Packham; Martin J. Glennie; Mark S. Cragg

The anti-CD20 monoclonal antibody (mAb) rituximab is now routinely used for the treatment of non-Hodgkins lymphoma and is being examined in a wide range of other B-cell disorders, such as rheumatoid arthritis. Despite intensive study, the mechanism of action still remains uncertain. In the current study, anti-CD20 mAb-induced calcium signaling was investigated. Previously, we grouped anti-CD20 mAbs into Type I (rituximab-like) and Type II (B1-like) based upon various characteristics such as their ability to induce complement activation and redistribute CD20 into detergent-insoluble membrane domains. Here we show that only Type I mAbs are capable of inducing a calcium flux in B cells and that this is tightly correlated with the expression of the B-cell antigen receptor (BCR). Inhibitor analysis revealed that the signaling cascade employed by CD20 was strikingly similar to that utilized by the BCR, with inhibitors of Syk, Src, and PI3K, but not EGTA, p38, or ERK1/2, completely ablating calcium flux. Furthermore, binding of Type I but not Type II mAbs caused direct association of CD20 with the BCR as measured by FRET and resulted in the phosphorylation of BCR-specific adaptor proteins BLNK and SLP-76. Crucially, variant Ramos cells lacking BCR expression but with unchanged CD20 expression were completely unable to induce calcium flux following ligation of CD20. Collectively, these data indicate that CD20 induces cytosolic calcium flux through its ability to associate with and “hijack” the signaling potential of the BCR.


Journal of Immunology | 2002

T Cell Immunity to Lymphoma Following Treatment with Anti-CD40 Monoclonal Antibody

Alison L. Tutt; Lyn O'Brien; Akmal Hussain; Graham R. Crowther; Ruth R. French; Martin J. Glennie

In this study we demonstrate that treatment with anti-CD40 mAb eradicates a range of mouse lymphomas (BCL1, A31, A20, and EL4), but only when used against i.v. tumor doses in excess of 107 cells. Only partial protection was seen against smaller tumor loads. We saw no evidence that anti-CD40 mAb changed the phenotype of the lymphomas or inhibited their growth in the initial period following treatment, but it did result in a rapid expansion of cytotoxic CD8+ cells that was able to clear the neoplastic disease and provide long-term protection against tumor rechallenge. The CTL responses were blocked by mAb against a range of coreceptors and cytokines, including CD8, B7-1, B7-2, LFA-1, and IFN-γ, but not CD4 or CTLA-4, indicating the presence of a conventional cellular Th1 response. Furthermore, we found evidence of cross-recognition between lymphomas (BCL1 and A20) as measured by cytotoxicity and IFN-γ responses in vitro and using tumor rechallenge experiments, suggesting common target Ags. Finally, although anti-CD40 was shown to stimulate NK cell killing, we could find no role for these cells in controlling tumor growth. These data underline the ability of anti-CD40 mAb to potentiate CTL responses and the potency of cellular immunity in eradicating large quantities of syngeneic tumor.

Collaboration


Dive into the Ruth R. French's collaboration.

Top Co-Authors

Avatar

Martin J. Glennie

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Mark S. Cragg

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison L. Tutt

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Peter Johnson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. T. Claude Chan

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar

Kerry L. Cox

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge