Aliaksndr Mialdun
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aliaksndr Mialdun.
Journal of Chemical Physics | 2011
Aliaksndr Mialdun; Valentina Shevtsova
We report on the development of the optical digital interferometry (ODI) technique for measuring diffusion and Soret coefficients. The unique feature of this method is that it traces the transient path of the system in the entire two-dimensional cross section of a cell. In this way, it is applicable not only for measurements of Soret coefficients, but also for studying diffusive transport mechanism and convection. Presently, this method is not widely used and, in our view, not because of fundamental limitations but rather due to a lack of properly developed postexperimental procedures of the raw data analysis. Thus, in this paper our attention is focused on the successive analysis of different steps: the fringe analysis, the choice of reference images, the thermal design of the cell, and multiparameter fitting procedure. Using the ODI technique, we have measured the diffusion and the Soret coefficients for three binary mixtures composed of dodecane (C(12)H(26)), isobutylbenzene, and 1,2,3,4-tetrahydronaphtalene at a mean temperature of 25(∘)C and 50 wt. % in each component. These measurements were compared with their benchmark values and show an agreement within less than 3%.
Journal of Chemical Physics | 2013
M. Gebhardt; W. Köhler; Aliaksndr Mialdun; Viktar Yasnou; Valentina Shevtsova
We have measured the Soret (S(T)), diffusion (D), and thermal diffusion (D(T)) coefficients of the three binary benchmark mixtures of dodecane (C12), isobutylbenzene, and 1,2,3,4-tetrahydronaphthalene at T = 25°C for at least five different concentrations each, covering the entire binary composition range. The two different optical techniques employed, optical beam deflection and optical digital interferometry, are in good to excellent agreement. Additionally, we have carefully measured the optical contrast factors (∂n/∂c)(p, T) and (∂n/∂T)(p, c). If the temperature and composition dependence of the mixture density is taken into account, both the Lorentz-Lorenz (LL) and the Looyenga (LO) equations give reasonable predictions of (∂n/∂c)(p, T). In case of (∂n/∂T)(p, c), only the LO equation yields good predictions in case of constant molecular polarizabilities α(i) of the pure compounds. If the apparent temperature dependence of α(i) is explicitly taken into account, excellent predictions are obtained both from the LL and the LO equations.
European Physical Journal E | 2015
Aliaksndr Mialdun; Jean Claude Legros; Viktar Yasnou; Vitaliy Sechenyh; Valentina Shevtsova
We have determined the Soret (ST), diffusion (D, and thermodiffusion (DT) coefficients in a ternary mixture of tetralin-isobutylbenzene-n-dodecane with a composition of 0.80/0.10/0.10 by mass fraction at a temperature of 298K. The Soret coefficients were measured in the microgravity experiment DCMIX1 and on the ground by optical digital interferometry (ODI) using two lasers with different wavelengths. The values of the Soret coefficients were determined from the stationary separation of the components using two- and six-parameter fits. The diffusion coefficients were independently measured using the Taylor Dispersion Technique in the ground laboratory, and the thermodiffusion coefficients were derived from known ST and matrix D. The processing of the data from the DCMIX experiment conducted on the International Space Station is discussed in detail. The multi-user design of the on-board instrument causes perturbations in the component separation. Several recommendations are suggested for improving the quality of the microgravity results. For example, we demonstrated that the tomography reconstruction of the 3-D concentration field allows to restore the underestimated component separation resulting from the spatial non-linearity of the temperature field. Furthermore, to avoid errors in component separation due to mass exchange between the working liquid volume and the expansion volume at the top of the cell, we suggest considering the evolution of the separation only in the lower half of the cell. The results of this study displayed reasonable quantitative agreement between the microgravity and ground experiments.Graphical abstract
Journal of Physics: Conference Series | 2011
Valentina Shevtsova; Tatyana Lyubimova; Ziad Saghir; Denis Melnikov; Yuri Gaponenko; Vitaliy Sechenyh; Jean Claude Legros; Aliaksndr Mialdun
The experiment IVIDIL (Influence of Vibrations on Diffusion in Liquids) has been performed in 2009-2010 onboard the ISS, inside the SODI instrument mounted in the Glovebox at the ESA Columbus module. 55 experimental runs were carried out and each of them lasted 18 hours. The objectives of the experiment were multi-fold and here we report results for one of them. After each space experiment there is a discussion about the role of onboard g-jitters. The attention is focused on reproducibility of the results, their accuracy and comparison with numerical simulations conducted in exact geometry and using the physical properties of the system. We shortly report on the results of six experiments which were performed in natural environment of the ISS without forced vibrations. Thermodiffusion process in the cells filled with binary mixtures was monitored by means of optical digital interferometry. Perturbations of the diffusion control processes by on-board g-jitters is not observed in nominal regime of the ISS. Perturbations of thermodiffusion process were observed in non-nominal regime of the ISS, e.g. attitude control maneuvers.
Measurement Science and Technology | 2008
C. Ferrera; J. M. Montanero; Aliaksndr Mialdun; Valentina Shevtsova; M. G. Cabezas
The dynamical free surface deformation due to thermal (Marangoni-buoyant) convection in liquid bridges of 5 cSt silicone oil was studied experimentally using optical imaging. The experiments were conducted under ground-based conditions for a wide range of temperature differences between the solid supports, and for several liquid bridge volumes. Oscillatory motion set in at a critical value of the temperature difference and caused oscillation of the free surface. The amplitude and fundamental frequency characterizing the magnitude and shape of that oscillation were obtained by optical imaging. The procedure allows one to describe the oscillation up to sub-micron order. The temperature oscillations at five points inside the liquid bridge were measured by five thermocouples. Their amplitude and fundamental frequency were compared with the corresponding values of the free surface oscillations. The optical imaging revealed the same dynamics as was obtained from the (more intrusive) temperature measurements. The spatial structure of the free surface oscillations along the liquid bridge axis was also analysed.
Physical Chemistry Chemical Physics | 2015
Jean Claude Legros; Yuri Gaponenko; Aliaksndr Mialdun; Thomas Triller; A. Hammon; C. Bauer; W. Köhler; Valentina Shevtsova
We present a comprehensive experimental study of isothermal Fickian diffusion in the ternary and binary liquid mixtures of water, ethanol, and triethylene glycol over the entire ternary composition space. 21 ternary mixtures inside the composition triangle have been investigated by means of the Taylor dispersion technique and 30 binary mixtures by Taylor dispersion and/or optical beam deflection in a Soret cell. The scalar binary diffusion coefficient has been determined along all three binary boundaries of the composition space and compared with estimations based on the Stokes-Einstein relation using stick or slip boundary conditions. The four elements of the ternary diffusion matrix and the diffusion eigenvalues were determined over a large portion of the composition triangle. The pseudo-binary diffusion coefficients obtained in Taylor dispersion experiments with either one of the two independent concentrations kept constant are comparable to the two diffusion eigenvalues. One of the two off-diagonal elements of the diffusion matrix is of the same order as the diagonal ones and, hence, not negligible, whereas the other one is approximately one order of magnitude smaller. Where available, our results compare well with literature data. The investigated compositions also comprise the five compositions that are scheduled for microgravity experiments in the ESA DCMIX3 project.
Journal of Chemical Physics | 2015
Aliaksndr Mialdun; Valentina Shevtsova
We report on the measurement of diffusion (D), Soret (S(T)), and thermodiffusion (D(T)) coefficients in toluene-cyclohexane mixture with mass fraction of toluene 0.40 onboard of the International Space Station. The coefficients were measured in the range of the mean temperatures between 20 °C and 34 °C. The Soret coefficient is negative within the investigated temperature range and its absolute value |S(T)| decreases with increasing temperature. The diffusion coefficient for this system increases with temperature rising. For comparison, the temperature dependence of diffusion coefficient was measured in ground laboratory using counter-flow cell technique and revealed a good agreement with microgravity results. A non-direct comparison of the measured onboard Soret coefficients with different systems indicated a similar trend for the temperature dependent behavior. Unexpected experimental finding is that for this system the thermodiffusion coefficient D(T) does not depend on temperature.
Physics of Fluids | 2012
Takuya Matsunaga; Aliaksndr Mialdun; Koichi Nishino; Valentina Shevtsova
Flow-induced dynamic free-surface deformations are experimentally studied in a confined liquid volume of 5cSt silicone oil (Prandtl number Pr = 68). The geometry of the problem is a liquid column concentrically surrounded by an annular gas channel. A gas stream entering the duct from the top or bottom entrains the motionless liquid. The dynamic deformation of the gas–liquid interface is caused by a steady axisymmetric shear-driven flow. The experiments are performed in normal gravity conditions and the static deformation of a liquid bridge interface is unavoidable. The magnitude and shape of the dynamic surface deformation are analyzed using optical measurements with a comprehensive treatment of the images. The deviation of the free surface shape from the corresponding equilibrium profile is determined with an uncertainty of about 0.1 μm. The order of magnitude of the interface deformation is proportional to the capillary number, which is defined as the ratio of the viscous force per unit area to the capi...
European Physical Journal E | 2014
Yuri Gaponenko; Aliaksndr Mialdun; Valentina Shevtsova
One of the targets of the experiment IVIDIL (Influence Vibrations on Diffusion in Liquids) conducted on-board ISS was to study the response of binary mixtures to vibrational forcing when the density gradient results from thermal and compositional variations. Compositional variations were created by the Soret effect and can strengthen or weaken the overall density gradient and, consequently, the response to vibrational forcing. We present the results of two experimental runs conducted on-board ISS in the frame of the experiment IVIDIL for low and strong vibrational forcing. The experimental observations revealed that a significant mean flow is set within 2 minutes after imposing vibrations and later in time it varies weakly and slowly due to the Soret effect. A mathematical model has been developed to compute the thermal and concentration fields in the experiment IVIDIL and verify the accuracy of picture processing based on the classical approach used in non-convective systems with the Soret effect. The effect of temperature and concentrations perturbations by joint action of vibrational convection and Soret effect on long time scale are carefully examined. The model demonstrates that image processing used for non-convective systems is suitable for the systems with vibration-affected thermodiffusion experiment.Graphical abstract
Journal of Chemical Physics | 2017
Estela Lapeira; M. Gebhardt; Thomas Triller; Aliaksndr Mialdun; W. Köhler; Valentina Shevtsova; M. Mounir Bou-Ali
We report on the measurements of diffusion (D), thermodiffusion (DT), and Soret (ST) coefficients in binary pairs of the ternary system toluene-methanol-cyclohexane using different instrumental techniques: microgravity measurements (SODI/DCMIX2) on the International Space Station, thermogravitational column in combination with sliding symmetric tubes, optical beam deflection, optical digital interferometry, and counter flow cell. The binary systems have large regions where the mixtures are either not miscible or the Soret coefficient is negative. All the coefficients have been measured over a wide composition range with the exception of a miscibility gap. Results from different instruments and literature data are in favorable agreement over a broad composition range. Additionally, we have carefully measured the physical properties and the optical contrast factors (∂n/∂c)p,T and (∂n/∂T)p,c. The latter ones were also calculated using the Looyenga equation. The measurements in methanol-cyclohexane mixture re...