Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice A. Gibson is active.

Publication


Featured researches published by Alice A. Gibson.


Clinical Cancer Research | 2013

Contribution of OATP1B1 and OATP1B3 to the Disposition of Sorafenib and Sorafenib-Glucuronide

Eric I. Zimmerman; Shuiying Hu; Justin L. Roberts; Alice A. Gibson; Shelley Orwick; Lie Li; Alex Sparreboom; Sharyn D. Baker

Purpose: Many tyrosine kinase inhibitors (TKI) undergo extensive hepatic metabolism, but mechanisms of their hepatocellular uptake remain poorly understood. We hypothesized that liver uptake of TKIs is mediated by the solute carriers OATP1B1 and OATP1B3. Experimental Design: Transport of crizotinib, dasatinib, gefitinib, imatinib, nilotinib, pazopanib, sorafenib, sunitinib, vandetanib, and vemurafenib was studied in vitro using artificial membranes (PAMPA) and HEK293 cell lines stably transfected with OATP1B1, OATP1B3, or the ortholog mouse transporter, Oatp1b2. Pharmacokinetic studies were conducted with Oatp1b2-knockout mice and humanized OATP1B1- or OATP1B3-transgenic mice. Results: All 10 TKIs were identified as substrates of OATP1B1, OATP1B3, or both. Transport of sorafenib was investigated further, as its diffusion was particularly low in the PAMPA assay (<4%) than other TKIs that were transported by both OATP1B1 and OATP1B3. Whereas Oatp1b2 deficiency in vivo had minimal influence on parent and active metabolite N-oxide drug exposure, plasma levels of the glucuronic acid metabolite of sorafenib (sorafenib-glucuronide) were increased more than 8-fold in Oatp1b2-knockout mice. This finding was unrelated to possible changes in intrinsic metabolic capacity for sorafenib-glucuronide formation in hepatic or intestinal microsomes ex vivo. Ensuing experiments revealed that sorafenib-glucuronide was itself a transported substrate of Oatp1b2 (17.5-fold vs. control), OATP1B1 (10.6-fold), and OATP1B3 (6.4-fold), and introduction of the human transporters in Oatp1b2-knockout mice provided partial restoration of function. Conclusions: These findings signify a unique role for OATP1B1 and OATP1B3 in the elimination of sorafenib-glucuronide and suggest a role for these transporters in the in vivo handling of glucuronic acid conjugates of drugs. Clin Cancer Res; 19(6); 1458–66. ©2013 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2

Jason A. Sprowl; Giuliano Ciarimboli; Cynthia S. Lancaster; Hugh Giovinazzo; Alice A. Gibson; Guoqing Du; Laura J. Janke; Guido Cavaletti; Anthony F. Shields; Alex Sparreboom

Oxaliplatin is an integral component of colorectal cancer therapy, but its clinical use is associated with a dose-limiting peripheral neurotoxicity. We found that the organic cation transporter 2 (OCT2) is expressed on dorsal root ganglia cells within the nervous system where oxaliplatin is known to accumulate. Cellular uptake of oxaliplatin was increased by 16- to 35-fold in cells overexpressing mouse Oct2 or human OCT2, and this process was associated with increased DNA platination and oxaliplatin-induced cytotoxicity. Furthermore, genetic or pharmacologic knockout of Oct2 protected mice from hypersensitivity to cold or mechanical-induced allodynia, which are established tests to assess acute oxaliplatin-induced neurotoxicity. These findings provide a rationale for the development of targeted approaches to mitigate this debilitating toxicity.


Clinical Cancer Research | 2012

Influence of Polymorphic OATP1B-Type Carriers on the Disposition of Docetaxel

Anne-Joy M. de Graan; Cynthia S. Lancaster; Amanda Obaidat; Bruno Hagenbuch; Laure Elens; Lena E. Friberg; Peter de Bruijn; Shuiying Hu; Alice A. Gibson; Gitte H. Bruun; Thomas J. Corydon; Torben S. Mikkelsen; Aisha L. Walker; Guoqing Du; Walter J. Loos; Ron H.N. van Schaik; Sharyn D. Baker; Ron H.J. Mathijssen; Alex Sparreboom

Purpose: Docetaxel is extensively metabolized by CYP3A4 in the liver but mechanisms by which the drug is taken up into hepatocytes remain poorly understood. We hypothesized that (i) liver uptake of docetaxel is mediated by the polymorphic solute carriers OATP1B1 and OATP1B3 and (ii) inherited genetic defects in this process may impair systemic drug elimination. Experimental Design: Transport of docetaxel was studied in vitro using various cell lines stably transfected with OATP1B1*1A (wild-type), OATP1B1*5 [c.521T>C (V174A); rs4149056], OATP1B3, or the mouse transporter Oatp1b2. Docetaxel clearance was evaluated in wild-type and Oatp1b2-knockout mice as well as in two cohorts of patients with multiple variant transporter genotypes (n = 213). Results: Docetaxel was found to be a substrate for OATP1B1, OATP1B3, and Oatp1b2 but was not transported by OATP1B1*5. Deficiency of Oatp1b2 in mice was associated with an 18-fold decrease in docetaxel clearance (P = 0.0099), which was unrelated to changes in intrinsic metabolic capacity in mouse liver microsomes. In patients, however, none of the studied common reduced function variants in OATP1B1 or OATP1B3 were associated with docetaxel clearance (P > 0.05). Conclusions: The existence of at least two potentially redundant uptake transporters in the human liver with similar affinity for docetaxel supports the possibility that functional defects in both of these proteins may be required to confer substantially altered disposition phenotypes. In view of the established exposure–toxicity relationships for docetaxel, we suggest that caution is warranted if docetaxel has to be administered together with agents that potently inhibit both OATP1B1 and OATP1B3. Clin Cancer Res; 18(16); 4433–40. ©2012 AACR.


Cell Death & Differentiation | 1998

Expression of genes that regulate Fas signalling and Fas-mediated apoptosis in colon carcinoma cells.

David M. Tillman; Franklin G. Harwood; Alice A. Gibson; Janet A. Houghton

The expression of genes that regulate Fas-induced apoptosis has been examined in 10 human cultured colon carcinoma cell lines with defined and varied sensitivity to the cytolytic anti-Fas MoAb CH-11. Four lines demonstrated sensitivity to CH-11 (HT29, GC3/c1, TS−, Thy4), and six were resistant to the induction of apoptosis vis Fas. In nine lines expressing Fas, PCR-sequencing indicated that the death domain contained wt sequences. Downstream of Fas, expression of FADD/MORT1 and FLICE, essential components of the DISC, and negative regulators of Fas signalling including sFas, FAP-1 and Bcl-2, showed no correlation between levels of expression and sensitivity to Fas-mediated cytotoxicity. However, levels of the Fas antigen varied by >1000-fold, and correlated with CH-11 sensitivity. Following fourfold elevation in Fas expression in HT29 cells treated with interferon-γ, a synergistic effect on Fas-mediated apoptosis was obtained when CH-11 and interferon-γ were combined.


Clinical Pharmacology & Therapeutics | 2013

Conjunctive Therapy of Cisplatin With the OCT2 Inhibitor Cimetidine: Influence on Antitumor Efficacy and Systemic Clearance

Jason A. Sprowl; L. van Doorn; Shuiying Hu; L van Gerven; P. de Bruijn; Lie Li; Alice A. Gibson; Ron H.J. Mathijssen; Alex Sparreboom

The organic cation transporter 2 (OCT2) regulates uptake of cisplatin in proximal tubules, and inhibition of OCT2 protects against severe cisplatin‐induced nephrotoxicity. However, it remains uncertain whether potent OCT2 inhibitors, such as cimetidine, can influence the antitumor properties and/or disposition of cisplatin. Using an array of preclinical assays, we found that cimetidine had no effect on the uptake and cytotoxicity of cisplatin in ovarian cancer cells with high OCT2 mRNA levels (IGROV‐1 cells). Moreover, the antitumor efficacy of cisplatin in mice bearing luciferase‐tagged IGROV‐1 xenografts was unaffected by cimetidine (P = 0.39). Data obtained in 18 patients receiving cisplatin (100 mg/m2) in a randomized crossover fashion with or without cimetidine (800 mg × 2) revealed that cimetidine did not alter exposure to unbound cisplatin, a marker of antitumor efficacy (4.37 vs. 4.38 µg·h/ml; P = 0.86). These results support the future clinical exploration of OCT2 inhibitors as specific modifiers of cisplatin‐induced nephrotoxicity.


Clinical Pharmacology & Therapeutics | 2011

Effect of ABCC2 (MRP2) Transport Function on Erythromycin Metabolism

Ryan M. Franke; Cynthia S. Lancaster; C.J. Peer; Alice A. Gibson; Ashley M. Kosloske; Shelley Orwick; Ron H.J. Mathijssen; William D. Figg; Sharyn D. Baker; Alex Sparreboom

The macrolide antiobiotic erythromycin undergoes extensive hepatic metabolism and is commonly used as a probe for cytochrome P450 (CYP) 3A4 activity. By means of a transporter screen, erythromycin was identified as a substrate for the transporter ABCC2 (MRP2) and its murine ortholog, Abcc2. Because these proteins are highly expressed on the biliary surface of hepatocytes, we hypothesized that impaired Abcc2 function may influence the rate of hepatobiliary excretion and thereby enhance erythromycin metabolism. Using Abcc2 knockout mice, we found that Abcc2 deficiency was associated with a significant increase in erythromycin metabolism, whereas murine Cyp3a protein expression and microsomal Cyp3a activity were not affected. Next, in a cohort of 108 human subjects, we observed that homozygosity for a common reduced‐function variant in ABCC2 (rs717620) was also linked to an increase in erythromycin metabolism but was not correlated with the clearance of midazolam. These results suggest that impaired ABCC2 function can alter erythromycin metabolism, independent of changes in CYP3A4 activity.


Clinical Cancer Research | 2012

Ontogeny and Sorafenib Metabolism

Eric I. Zimmerman; Justin L. Roberts; Lie Li; David Finkelstein; Alice A. Gibson; Amarjit S. Chaudhry; Erin G. Schuetz; Jeffrey E. Rubnitz; Hiroto Inaba; Sharyn D. Baker

Purpose: To investigate the role of ontogeny in sorafenib metabolism to the equipotent active metabolite sorafenib N-oxide. Experimental Design: Steady-state pharmacokinetic studies of sorafenib and metabolites were conducted in 30 children and young adults (17 males; median age, 9.5 years) receiving sorafenib 150 mg/m2 or 200 mg/m2 twice daily. Sorafenib metabolism was evaluated in vitro at 10 μmol/L using a panel of purified human cytochrome P450 (CYP) enzymes. Sorafenib metabolism and CYP3A4 expression was evaluated in 52 human liver samples from donors of ≤20 years old. The drug–drug interaction potential between sorafenib and azole antifungal agents was evaluated in vitro and in vivo. Results: No age-related differences in sorafenib apparent oral clearance were observed. Mean sorafenib N-oxide metabolite ratio was 0.27 ± 0.14. In children of ≤10 years of age, boys had approximately 2-fold higher N-oxide ratios than girls (0.40 ± 0.15 vs. 0.22 ± 0.12, P = 0.026). Of the CYPs evaluated, sorafenib was exclusively metabolized to sorafenib N-oxide by CYP3A4. A trend for increased N-oxide formation in boys was observed in liver samples, which correlated with CYP3A4 mRNA expression. Posaconazole and voriconazole potently inhibited sorafenib N-oxide formation in vitro, and reduced sorafenib N-oxide formation in 3 children given sorafenib concurrent with azoles. Conclusion: We have identified several factors affecting interpatient variability in sorafenib metabolism to the active N-oxide metabolite including age, sex, and concurrent treatment with azole antifungals. This knowledge may provide important considerations for the clinical use of sorafenib in children and possibly other kinase inhibitors undergoing CYP3A4-mediated metabolism. Clin Cancer Res; 18(20); 5788–95. ©2012 AACR.


Clinical Cancer Research | 2013

Contribution of Abcc4-Mediated Gastric Transport to the Absorption and Efficacy of Dasatinib

Brian Furmanski; Shuiying Hu; Ken-ichi Fujita; Lie Li; Alice A. Gibson; Laura J. Janke; Richard T. Williams; John D. Schuetz; Alex Sparreboom; Sharyn D. Baker

Purpose: Several oral multikinase inhibitors are known to interact in vitro with the human ATP-binding cassette transporter ABCC4 (MRP4), but the in vivo relevance of this interaction remains poorly understood. We hypothesized that host ABCC4 activity may influence the pharmacokinetic profile of dasatinib and subsequently affect its antitumor properties. Experimental Design: Transport of dasatinib was studied in cells transfected with human ABCC4 or the ortholog mouse transporter, Abcc4. Pharmacokinetic studies were done in wild-type and Abcc4-null mice. The influence of Abcc4 deficiency on dasatinib efficacy was evaluated in a model of Ph+ acute lymphoblastic leukemia by injection of luciferase-positive, p185(BCR-ABL)-expressing Arf(−/−) pre-B cells. Results: Dasatinib accumulation was significantly changed in cells overexpressing ABCC4 or Abcc4 compared with control cells (P < 0.001). Deficiency of Abcc4 in vivo was associated with a 1.75-fold decrease in systemic exposure to oral dasatinib, but had no influence on the pharmacokinetics of intravenous dasatinib. Abcc4 was found to be highly expressed in the stomach, and dasatinib efflux from isolated mouse stomachs ex vivo was impaired by Abcc4 deficiency (P < 0.01), without any detectable changes in gastric pH. Abcc4-null mice receiving dasatinib had an increase in leukemic burden, based on bioluminescence imaging, and decreased overall survival compared with wild-type mice (P = 0.048). Conclusions: This study suggests that Abcc4 in the stomach facilitates the oral absorption of dasatinib, and it possibly plays a similar role for other orally administered substrates, such as acetylsalicylic acid. This phenomenon also provides a mechanistic explanation for the malabsorption of certain drugs following gastric resection. Clin Cancer Res; 19(16); 4359–70. ©2013 AACR.


Molecular Cancer Therapeutics | 2013

Modulation of OATP1B-type Transporter Function Alters Cellular Uptake and Disposition of Platinum Chemotherapeutics

Cynthia S. Lancaster; Jason A. Sprowl; Aisha L. Walker; Shuiying Hu; Alice A. Gibson; Alex Sparreboom

Expression of the human organic anion transporting polypeptides OATP1B1 and OATP1B3 has been previously believed to be restricted to hepatocytes. Here we show that the gene encoding OATP1B3, but not OATP1B1, is abundantly expressed in multiple human solid tumors that include hepatocellular, lung, and ovarian carcinomas. Surprisingly, OATP1B3 gene expression in a panel of 60 human tumor cell lines was linked with sensitivity to multiple cytotoxic agents, including the platinum anticancer drugs cisplatin, carboplatin, and oxaliplatin. In addition, overexpression of OATP1B3 in mammalian cells increased cellular accumulation of platinum agents and decreased cell survival. In mice with a targeted disruption of the ortholog transporter Oatp1b2, the liver-to-plasma ratio of cisplatin was significantly reduced compared with wild-type mice, without concurrent changes in expression profiles of other transporter genes. Our findings indicate an unexpected role for tumoral and host OATP1B-type carriers in the toxicity and disposition of platinum anticancer drugs, and may provide a foundation for understanding the extensive interindividual pharmacodynamic variability seen with these drugs in patients. Mol Cancer Ther; 12(8); 1537–44. ©2013 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions

Navjotsingh Pabla; Alice A. Gibson; Mike Buege; Su Sien Ong; Lie Li; Shuiying Hu; Guoqing Du; Jason A. Sprowl; Aksana Vasilyeva; Laura J. Janke; Eberhard Schlatter; Taosheng Chen; Giuliano Ciarimboli; Alex Sparreboom

Significance Acute kidney injury (AKI) is a common clinical condition caused by loss of kidney function. Lack of therapeutic options has contributed to high mortality rates in AKI patients. Drug-induced AKI, as observed during cisplatin-based anticancer therapy, is responsible for about 20% of renal failure cases. The initial injury triggers a proliferative response in renal tubular cells, which in the presence of cellular damage can further accelerate renal injury. Our study provides evidence that the small-molecule cell-cycle inhibitors palbociclib and LEE011 can prevent cisplatin-induced AKI by inhibiting two relevant targets: renal cell-cycle progression and organic cation transporter 2, a renal uptake transporter of cisplatin. The future development of cyclin-dependent kinase 4/6 inhibitors as renal protective agents could have significant clinical benefits. Acute kidney injury (AKI) is a potentially fatal syndrome characterized by a rapid decline in kidney function caused by ischemic or toxic injury to renal tubular cells. The widely used chemotherapy drug cisplatin accumulates preferentially in the renal tubular cells and is a frequent cause of drug-induced AKI. During the development of AKI the quiescent tubular cells reenter the cell cycle. Strategies that block cell-cycle progression ameliorate kidney injury, possibly by averting cell division in the presence of extensive DNA damage. However, the early signaling events that lead to cell-cycle activation during AKI are not known. In the current study, using mouse models of cisplatin nephrotoxicity, we show that the G1/S-regulating cyclin-dependent kinase 4/6 (CDK4/6) pathway is activated in parallel with renal cell-cycle entry but before the development of AKI. Targeted inhibition of CDK4/6 pathway by small-molecule inhibitors palbociclib (PD-0332991) and ribociclib (LEE011) resulted in inhibition of cell-cycle progression, amelioration of kidney injury, and improved overall survival. Of additional significance, these compounds were found to be potent inhibitors of organic cation transporter 2 (OCT2), which contributes to the cellular accumulation of cisplatin and subsequent kidney injury. The unique cell-cycle and OCT2-targeting activities of palbociclib and LEE011, combined with their potential for clinical translation, support their further exploration as therapeutic candidates for prevention of AKI.

Collaboration


Dive into the Alice A. Gibson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuiying Hu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lie Li

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jason A. Sprowl

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Guoqing Du

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Ron H.J. Mathijssen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Navjotsingh Pabla

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Aksana Vasilyeva

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge