Jason A. Sprowl
St. Jude Children's Research Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason A. Sprowl.
Clinical Cancer Research | 2012
Giuliano Ciarimboli; Cynthia S. Lancaster; Eberhard Schlatter; Ryan M. Franke; Jason A. Sprowl; Hermann Pavenstädt; Vivian Massmann; Denise Guckel; Ron H.J. Mathijssen; Wenjian Yang; Ching-Hon Pui; Mary V. Relling; Edwin Herrmann; Alex Sparreboom
Purpose: Knowledge of transporters responsible for the renal secretion of creatinine is key to a proper interpretation of serum creatinine and/or creatinine clearance as markers of renal function in cancer patients receiving chemotherapeutic agents. Experimental Design: Creatinine transport was studied in transfected HEK293 cells in vitro and in wild-type mice and age-matched organic cation transporter 1 and 2–deficient [Oct1/2(−/−)] mice ex vivo and in vivo. Clinical pharmacogenetic and transport inhibition studies were done in two separate cohorts of cancer patients. Results: Compared with wild-type mice, creatinine clearance was significantly impaired in Oct1/2(−/−) mice. Furthermore, creatinine inhibited organic cation transport in freshly isolated proximal tubules from wild-type mice and humans, but not in those from Oct1/2(−/−) mice. In a genetic association analysis (n = 590), several polymorphisms around the OCT2/SLC22A2 gene locus, including rs2504954 (P = 0.000873), were significantly associated with age-adjusted creatinine levels. Furthermore, in cancer patients (n = 68), the OCT2 substrate cisplatin caused an acute elevation of serum creatinine (P = 0.0083), consistent with inhibition of an elimination pathway. Conclusions: Collectively, this study shows that OCT2 plays a decisive role in the renal secretion of creatinine. This process can be inhibited by OCT2 substrates, which impair the usefulness of creatinine as a marker of renal function. Clin Cancer Res; 18(4); 1101–8. ©2012 AACR.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Jason A. Sprowl; Giuliano Ciarimboli; Cynthia S. Lancaster; Hugh Giovinazzo; Alice A. Gibson; Guoqing Du; Laura J. Janke; Guido Cavaletti; Anthony F. Shields; Alex Sparreboom
Oxaliplatin is an integral component of colorectal cancer therapy, but its clinical use is associated with a dose-limiting peripheral neurotoxicity. We found that the organic cation transporter 2 (OCT2) is expressed on dorsal root ganglia cells within the nervous system where oxaliplatin is known to accumulate. Cellular uptake of oxaliplatin was increased by 16- to 35-fold in cells overexpressing mouse Oct2 or human OCT2, and this process was associated with increased DNA platination and oxaliplatin-induced cytotoxicity. Furthermore, genetic or pharmacologic knockout of Oct2 protected mice from hypersensitivity to cold or mechanical-induced allodynia, which are established tests to assess acute oxaliplatin-induced neurotoxicity. These findings provide a rationale for the development of targeted approaches to mitigate this debilitating toxicity.
Clinical Cancer Research | 2013
Anne-Joy M. de Graan; Laure Elens; Jason A. Sprowl; Alex Sparreboom; Lena E. Friberg; Bronno van der Holt; Pleun J. de Raaf; Peter de Bruijn; Frederike K. Engels; F. Eskens; Erik A.C. Wiemer; Jaap Verweij; Ron H.J. Mathijssen; Ron H.N. van Schaik
Purpose: Paclitaxel is used for the treatment of several solid tumors and displays a high interindividual variation in exposure and toxicity. Neurotoxicity is one of the most prominent side effects of paclitaxel. This study explores potential predictive pharmacokinetic and pharmacogenetic determinants for the onset and severity of neurotoxicity. Experimental Design: In an exploratory cohort of patients (n = 261) treated with paclitaxel, neurotoxicity incidence, and severity, pharmacokinetic parameters and pharmacogenetic variants were determined. Paclitaxel plasma concentrations were measured by high-performance liquid chromatography or liquid chromatography/tandem mass spectrometry, and individual pharmacokinetic parameters were estimated from previously developed population pharmacokinetic models by nonlinear mixed effects modeling. Genetic variants of paclitaxel pharmacokinetics tested were CYP3A4*22, CYP2C8*3, CYP2C8*4, and ABCB1 3435 C>T. The association between CYP3A4*22 and neurotoxicity observed in the exploratory cohort was validated in an independent patient cohort (n = 239). Results: Exposure to paclitaxel (logAUC) was correlated with severity of neurotoxicity (P < 0.00001). Female CYP3A4*22 carriers were at increased risk of developing neurotoxicity (P = 0.043) in the exploratory cohort. CYP3A4*22 carrier status itself was not associated with pharmacokinetic parameters (CL, AUC, Cmax, or T>0.05) of paclitaxel in males or females. Other genetic variants displayed no association with neurotoxicity. In the subsequent independent validation cohort, CYP3A4*22 carriers were at risk of developing grade 3 neurotoxicity (OR = 19.1; P = 0.001). Conclusions: Paclitaxel exposure showed a relationship with the severity of paclitaxel-induced neurotoxicity. In this study, female CYP3A4*22 carriers had increased risk of developing severe neurotoxicity during paclitaxel therapy. These observations may guide future individualization of paclitaxel treatment. Clin Cancer Res; 19(12); 3316–24. ©2013 AACR.
BMC Cancer | 2012
Allan D. Heibein; Baoqing Guo; Jason A. Sprowl; David A. MacLean; Amadeo M. Parissenti
BackgroundSince proteins involved in chemotherapy drug pharmacokinetics and pharmacodynamics have a strong impact on the uptake, metabolism, and efflux of such drugs, they likely play critical roles in resistance to chemotherapy drugs in cancer patients.MethodsTo investigate this hypothesis, we conducted a whole genome microarray study to identify difference in the expression of genes between isogenic doxorubicin-sensitive and doxorubicin-resistant MCF-7 breast tumour cells. We then assessed the degree of over-representation of doxorubicin pharmacokinetic and pharmacodynamic genes in the dataset of doxorubicin resistance genes.ResultsOf 27,958 Entrez genes on the array, 7.4 per cent or 2,063 genes were differentially expressed by ≥ 2-fold between wildtype and doxorubicin-resistant cells. The false discovery rate was set at 0.01 and the minimum p value for significance for any gene within the “hit list” was 0.01. Seventeen and 43 per cent of doxorubicin pharmacokinetic genes were over-represented in the hit list, depending upon whether the gene name was identical or within the same gene family, respectively. The most over-represented genes were within the 1C and 1B families of aldo-keto reductases (AKRs), which convert doxorubicin to doxorubicinol. Other genes convert doxorubicin to other metabolites or affect the influx, efflux, or cytotoxicity of the drug. In further support of the role of AKRs in doxorubicin resistance, we observed that, in comparison to doxorubicin, doxorubincol exhibited dramatically reduced cytotoxicity, reduced DNA-binding activity, and strong localization to extra nuclear lysosomes. Pharmacologic inhibition of the above AKRs in doxorubicin-resistant cells increased cellular doxorubicin levels, restored doxorubicin cytotoxicity and re-established doxorubicin localization to the nucleus. The properties of doxorubicinol were unaffected.ConclusionsThese findings demonstrate the utility of using curated pharmacokinetic and pharmacodynamic knowledge bases to identify highly relevant genes associated with doxorubicin resistance. The induction of one or more of these genes was found to be correlated with changes in the drug’s properties, while inhibiting one specific class of these genes (the AKRs) increased cellular doxorubicin content and restored drug DNA binding, cytotoxicity, and subcellular localization.
Clinical Pharmacology & Therapeutics | 2013
Jason A. Sprowl; L. van Doorn; Shuiying Hu; L van Gerven; P. de Bruijn; Lie Li; Alice A. Gibson; Ron H.J. Mathijssen; Alex Sparreboom
The organic cation transporter 2 (OCT2) regulates uptake of cisplatin in proximal tubules, and inhibition of OCT2 protects against severe cisplatin‐induced nephrotoxicity. However, it remains uncertain whether potent OCT2 inhibitors, such as cimetidine, can influence the antitumor properties and/or disposition of cisplatin. Using an array of preclinical assays, we found that cimetidine had no effect on the uptake and cytotoxicity of cisplatin in ovarian cancer cells with high OCT2 mRNA levels (IGROV‐1 cells). Moreover, the antitumor efficacy of cisplatin in mice bearing luciferase‐tagged IGROV‐1 xenografts was unaffected by cimetidine (P = 0.39). Data obtained in 18 patients receiving cisplatin (100 mg/m2) in a randomized crossover fashion with or without cimetidine (800 mg × 2) revealed that cimetidine did not alter exposure to unbound cisplatin, a marker of antitumor efficacy (4.37 vs. 4.38 µg·h/ml; P = 0.86). These results support the future clinical exploration of OCT2 inhibitors as specific modifiers of cisplatin‐induced nephrotoxicity.
Pharmacogenomics Journal | 2010
Kerry Reed; Stacey L. Hembruff; Jason A. Sprowl; Amadeo M. Parissenti
Induced expression of the Abcb1 drug transporter often occurs in tumors in response to chemotherapy. The role that epigenetic modifications within the ABCB1 promoter play in Abcb1 expression remains unclear. We selected MCF-7 cells for survival in increasing doses of chemotherapy drugs, and assessed the methylation status of 66 CpG sites within the ABCB1 promoter preceding, accompanying and following the onset of drug resistance. Increased ABCB1 transcript expression coincident with acquisition of resistance to epirubicin or paclitaxel was temporally associated with hypomethylation of the ABCB1 downstream promoter in the absence of gene amplifications or changes in mRNA stability. Treatment of control MCF-7 cells with demethylating and/or acetylating agents increased ABCB1 transcript expression. In addition to broad promoter hypomethylation, dramatic reductions in the methylation of specific CpG sites within the promoter were observed, suggesting that these sites may play a predominant role in transcriptional activation through promoter hypomethylation. Furthermore, our data suggest that allele-specific reductions in ABCB1 promoter methylation regulate promoter usage within paclitaxel-resistant cells. This study provides strong evidence that changes in ABCB1 promoter methylation, ABCB1 promoter usage and ABCB1 transcript expression can be temporally and causally correlated with the acquisition of drug resistance in breast tumor cells.
Breast Cancer Research | 2012
Jason A. Sprowl; Kerry Reed; Stephen R Armstrong; Carita Lannér; Baoqing Guo; Irina Kalatskaya; Lincoln Stein; Stacey L. Hembruff; Adam Tam; Amadeo M. Parissenti
IntroductionThe taxanes paclitaxel and docetaxel are widely used in the treatment of breast, ovarian, and other cancers. Although their cytotoxicity has been attributed to cell-cycle arrest through stabilization of microtubules, the mechanisms by which tumor cells die remains unclear. Paclitaxel has been shown to induce soluble tumor necrosis factor alpha (sTNF-α) production in macrophages, but the involvement of TNF production in taxane cytotoxicity or resistance in tumor cells has not been established. Our study aimed to correlate alterations in the TNF pathway with taxane cytotoxicity and the acquisition of taxane resistance.MethodsMCF-7 cells or isogenic drug-resistant variants (developed by selection for surviving cells in increasing concentrations of paclitaxel or docetaxel) were assessed for sTNF-α production in the absence or presence of taxanes by enzyme-linked immunosorbent assay (ELISA) and for sensitivity to docetaxel or sTNF-α by using a clonogenic assay (in the absence or presence of TNFR1 or TNFR2 neutralizing antibodies). Nuclear factor (NF)-κB activity was also measured with ELISA, whereas gene-expression changes associated with docetaxel resistance in MCF-7 and A2780 cells were determined with microarray analysis and quantitative reverse transcription polymerase chain reaction (RTqPCR).ResultsMCF-7 and A2780 cells increased production of sTNF-α in the presence of taxanes, whereas docetaxel-resistant variants of MCF-7 produced high levels of sTNF-α, although only within a particular drug-concentration threshold (between 3 and 45 nM). Increased production of sTNF-α was NF-κB dependent and correlated with decreased sensitivity to sTNF-α, decreased levels of TNFR1, and increased survival through TNFR2 and NF-κB activation. The NF-κB inhibitor SN-50 reestablished sensitivity to docetaxel in docetaxel-resistant MCF-7 cells. Gene-expression analysis of wild-type and docetaxel-resistant MCF-7, MDA-MB-231, and A2780 cells identified changes in the expression of TNF-α-related genes consistent with reduced TNF-induced cytotoxicity and activation of NF-κB survival pathways.ConclusionsWe report for the first time that taxanes can promote dose-dependent sTNF-α production in tumor cells at clinically relevant concentrations, which can contribute to their cytotoxicity. Defects in the TNF cytotoxicity pathway or activation of TNF-dependent NF-κB survival genes may, in contrast, contribute to taxane resistance in tumor cells. These findings may be of strong clinical significance.
Drug Metabolism and Disposition | 2014
Jason A. Sprowl; Alex Sparreboom
Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics in multiple tissues. Many of these transporters are highly expressed in the gastrointestinal tract, liver, and kidney and are considered to be of particular importance in governing drug absorption, elimination, and cellular sensitivity of specific organs to a wide variety of oncology drugs. Although the majority of studies on the interaction of oncology drugs with SLC have been restricted to the use of exploratory in vitro model systems, emerging evidence suggests that several SLCs, including OCT2 and OATP1B1, contribute to clinically important phenotypes associated with those agents. Recent literature has indicated that modulation of SLC activity may result in drug-drug interactions, and genetic polymorphisms in SLC genes have been described that can affect the handling of substrates. Alteration of SLC function by either of these mechanisms has been demonstrated to contribute to interindividual variability in the pharmacokinetics and toxicity associated with several oncology drugs. In this report, we provide an update on this rapidly emerging field.
Clinical Pharmacology & Therapeutics | 2012
Jason A. Sprowl; V Gregorc; C Lazzari; Ron H.J. Mathijssen; W. J. Loos; Alex Sparreboom
ABCC2 (MRP2, cMOAT) expression has been implicated in cisplatin resistance in vitro. In mice, cisplatin disposition and toxicity were unaffected by Abcc2 knockout (Abcc2−/−). Moreover, in cancer patients (n = 237), cisplatin pharmacokinetics (P > 0.12) and efficacy (P > 0.41) were not associated with seven of the single‐nucleotide polymorphisms (SNPs) in ABCC2. These SNPs were also not correlated with ABCC2 expression in the NCI60 panel (P > 0.26) or with cisplatin‐induced cytotoxicity (P = 0.21). These findings highlight the importance of verifying drug–transporter interactions with in vitro tests in humans.
Molecular Cancer Therapeutics | 2013
Cynthia S. Lancaster; Jason A. Sprowl; Aisha L. Walker; Shuiying Hu; Alice A. Gibson; Alex Sparreboom
Expression of the human organic anion transporting polypeptides OATP1B1 and OATP1B3 has been previously believed to be restricted to hepatocytes. Here we show that the gene encoding OATP1B3, but not OATP1B1, is abundantly expressed in multiple human solid tumors that include hepatocellular, lung, and ovarian carcinomas. Surprisingly, OATP1B3 gene expression in a panel of 60 human tumor cell lines was linked with sensitivity to multiple cytotoxic agents, including the platinum anticancer drugs cisplatin, carboplatin, and oxaliplatin. In addition, overexpression of OATP1B3 in mammalian cells increased cellular accumulation of platinum agents and decreased cell survival. In mice with a targeted disruption of the ortholog transporter Oatp1b2, the liver-to-plasma ratio of cisplatin was significantly reduced compared with wild-type mice, without concurrent changes in expression profiles of other transporter genes. Our findings indicate an unexpected role for tumoral and host OATP1B-type carriers in the toxicity and disposition of platinum anticancer drugs, and may provide a foundation for understanding the extensive interindividual pharmacodynamic variability seen with these drugs in patients. Mol Cancer Ther; 12(8); 1537–44. ©2013 AACR.