Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice Banh is active.

Publication


Featured researches published by Alice Banh.


Science Translational Medicine | 2011

Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality

Denise A. Chan; Patrick D. Sutphin; Phuong Nguyen; Sandra Turcotte; Edwin W. Lai; Alice Banh; Gloria E. Reynolds; Jen-Tsan Chi; Jason Wu; David E. Solow-Cordero; Muriel Bonnet; Jack U. Flanagan; Donna M. Bouley; Edward E. Graves; William A. Denny; Michael P. Hay; Amato J. Giaccia

A screen identifies a drug that specifically kills glycolysis-dependent cancer cells by inhibiting glucose uptake. Cancer’s Achilles’ Heel A quick tug on a fuel line can stop a car dead in its tracks. Similarly, depriving a cancer cell of its energy source can bring proliferation to a standstill. Chan et al. devised a drug discovery assay that took advantage of the fact that some kidney cancer cells depend on glucose for survival. By screening 64,000 small molecules, the authors found a class of drug that inhibits the glucose transporter and selectively impairs growth of these cancer cells in cultures and in animals. Certain kidney and other types of cancer cells lack the von Hippel–Lindau (VHL) tumor suppressor protein. This deficiency reorients carbohydrate metabolism so that the cancer cells depend on aerobic glycolysis—the conversion of glucose to lactate—rather than the more typical oxidative phosphorylation for a supply of energy. The drug identified by the authors, STF-31, was toxic to the VHL-deficient kidney tumor cells but, unlike many other cancer drugs, did not induce autophagy, apoptosis, or DNA damage. Rather, STF-31 exploited the fact that inactivation of VHL increases the activity of hypoxia-inducible factor transcription factor, which in turn stimulates the transcription of genes involved in glucose metabolism, including the glucose transporter–encoding gene GLUT1. By binding directly to the transporter, STF-31 blocked glucose uptake in VHL-deficient cancer cells but not in those with intact VHL; with their sugar delivery system stymied, the tumor suppressor–deprived cancer cells ceased glycolysis and thus adenosine 5′-triphosphate production and succumbed to necrosis. An extra benefit of the new agent is that its activity can be easily visualized, even deep inside an animal. Glucose uptake in a tumor can be monitored by fluorodeoxyglucose positron emission tomography. The reduction in glucose metabolism forced on tumors by STF-31 was detected in mice with this method—an approach that can be readily applied to humans to test the drug’s efficacy. If it can thwart the fuel supply line in human cancers, this promising drug likely will bring tumor thriving to a halt. Identifying new targeted therapies that kill tumor cells while sparing normal tissue is a major challenge of cancer research. Using a high-throughput chemical synthetic lethal screen, we sought to identify compounds that exploit the loss of the von Hippel–Lindau (VHL) tumor suppressor gene, which occurs in about 80% of renal cell carcinomas (RCCs). RCCs, like many other cancers, are dependent on aerobic glycolysis for ATP production, a phenomenon known as the Warburg effect. The dependence of RCCs on glycolysis is in part a result of induction of glucose transporter 1 (GLUT1). Here, we report the identification of a class of compounds, the 3-series, exemplified by STF-31, which selectively kills RCCs by specifically targeting glucose uptake through GLUT1 and exploiting the unique dependence of these cells on GLUT1 for survival. Treatment with these agents inhibits the growth of RCCs by binding GLUT1 directly and impeding glucose uptake in vivo without toxicity to normal tissue. Activity of STF-31 in these experimental renal tumors can be monitored by [18F]fluorodeoxyglucose uptake by micro–positron emission tomography imaging, and therefore, these agents may be readily tested clinically in human tumors. Our results show that the Warburg effect confers distinct characteristics on tumor cells that can be selectively targeted for therapy.


Cancer Research | 2011

Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis

Alice Banh; Jing Zhang; Hongbin Cao; Donna M. Bouley; Shirley Kwok; Christina S. Kong; Amato J. Giaccia; Albert C. Koong; Quynh-Thu Le

Galectin-1 (Gal-1), a carbohydrate-binding protein whose secretion is enhanced by hypoxia, promotes tumor aggressiveness by promoting angiogenesis and T-cell apoptosis. However, the importance of tumor versus host Gal-1 in tumor progression is undefined. Here we offer evidence that implicates tumor Gal-1 and its modulation of T-cell immunity in progression. Comparing Gal-1-deficient mice as hosts for Lewis lung carcinoma cells where Gal-1 levels were preserved or knocked down, we found that tumor Gal-1 was more critical than host Gal-1 in promoting tumor growth and spontaneous metastasis. Enhanced growth and metastasis associated with Gal-1 related to its immunomodulatory function, insofar as the benefits of Gal-1 expression to Lewis lung carcinoma growth were abolished in immunodeficient mice. In contrast, angiogenesis, as assessed by microvessel density count, was similar between tumors with divergent Gal-1 levels when examined at a comparable size. Our findings establish that tumor rather than host Gal-1 is responsible for mediating tumor progression through intratumoral immunomodulation, with broad implications in developing novel targeting strategies for Gal-1 in cancer.


Cancer Research | 2010

Imaging the Unfolded Protein Response in Primary Tumors Reveals Microenvironments with Metabolic Variations that Predict Tumor Growth

Michael T. Spiotto; Alice Banh; Ioanna Papandreou; Hongbin Cao; Michael G. Galvez; Geoffrey C. Gurtner; Nicholas C. Denko; Quynh-Thu Le; Albert C. Koong

Cancer cells exist in harsh microenvironments that are governed by various factors, including hypoxia and nutrient deprivation. These microenvironmental stressors activate signaling pathways that affect cancer cell survival. While others have previously measured microenvironmental stressors in tumors, it remains difficult to detect the real-time activation of these downstream signaling pathways in primary tumors. In this study, we developed transgenic mice expressing an X-box binding protein 1 (XBP1)-luciferase construct that served as a reporter for endoplasmic reticulum (ER) stress and as a downstream response for the tumor microenvironment. Primary mammary tumors arising in these mice exhibited luciferase activity in vivo. Multiple tumors arising in the same mouse had distinct XBP1-luciferase signatures, reflecting either higher or lower levels of ER stress. Furthermore, variations in ER stress reflected metabolic and hypoxic differences between tumors. Finally, XBP1-luciferase activity correlated with tumor growth rates. Visualizing distinct signaling pathways in primary tumors reveals unique tumor microenvironments with distinct metabolic signatures that can predict for tumor growth.


PLOS ONE | 2010

The RGD domain of human osteopontin promotes tumor growth and metastasis through activation of survival pathways.

Donald Courter; Hongbin Cao; Shirley Kwok; Christina S. Kong; Alice Banh; Peiwen Kuo; Donna M. Bouley; Carmen Vice; Odd Terje Brustugun; Nicholas C. Denko; Albert C. Koong; Amato J. Giaccia; Quynh-Thu Le

Background Human osteopontin (OPN), a known tumor associated protein, exists in different isoforms, whose function is unclear. It also possesses a RGD domain, which has been implicated in diverse function. Here, we use genetic approaches to systematically investigate the function of the RGD domain in different OPN isoforms on tumor progression and metastasis for 2 different solid tumor models. Methodology/Principal Findings Using isoform-specific qRT-PCR, we found that OPN-A and B were the main isoforms overexpressed in evaluated human tumors, which included 4 soft tissue sarcomas, 24 lung and 30 head and neck carcinomas. Overexpression of either OPN-A or B in two different cell types promoted local tumor growth and lung metastasis in SCID mouse xenografts. However, expression of either isoform with the RGD domain either mutated or deleted decreased tumor growth and metastasis, and resulted in increased apoptosis by TUNEL staining. In vitro, whereas mutation of the RGD domain did not affect cell-cell adhesion, soft agar growth or cell migration, it increased apoptosis under hypoxia and serum starvation. This effect could be mitigated when the RGD mutant cells were treated with condition media containing WT OPN. Mechanistically, the RGD region of OPN inhibited apoptosis by inducing NF-κB activation and FAK phosphorylation. Inhibition of NF-κB (by siRNA to the p65 subunit) or FAK activation (by a inhibitor) significantly increased apoptosis under hypoxia in WT OPN cells, but not in RGD mutant cells. Conclusion/Significance Unlike prior reports, our data suggest that the RGD domain of both OPN-A and B promote tumor growth and metastasis mainly by protecting cells against apoptosis under stressed conditions and not via migration or invasion. Future inhibitors directed against OPN should target multiple isoforms and should inhibit cell survival mechanisms that involve the RGD domain, FAK phosphorylation and NF-κB activation.


Clinical Cancer Research | 2011

A Novel Aldehyde Dehydrogenase-3 Activator Leads to Adult Salivary Stem Cell Enrichment In Vivo

Alice Banh; Nan Xiao; Hongbin Cao; Che-Hong Chen; Peiwen Kuo; Trevor Krakow; Brindha Bavan; Brian Khong; Mike Yao; Chi Ha; Michael Kaplan; Davud Sirjani; Kristin C. Jensen; Christina S. Kong; Daria Mochly-Rosen; Albert C. Koong; Quynh-Thu Le

Purpose: To assess aldehyde dehydrogenase (ALDH) expression in adult human and murine submandibular gland (SMG) stem cells and to determine the effect of ALDH3 activation in SMG stem cell enrichment. Experimental Design: Adult human and murine SMG stem cells were selected by cell surface markers (CD34 for human and c-Kit for mouse) and characterized for various other stem cell surface markers by flow cytometry and ALDH isozymes expression by quantitative reverse transcriptase PCR. Sphere formation and bromodeoxyuridine (BrdUrd) incorporation assays were used on selected cells to confirm their renewal capacity and three-dimensional (3D) collagen matrix culture was applied to observe differentiation. To determine whether ALDH3 activation would increase stem cell yield, adult mice were infused with a novel ALDH3 activator (Alda-89) or with vehicle followed by quantification of c-Kit+/CD90+ SMG stem cells and BrdUrd+ salispheres. Results: More than 99% of CD34+ huSMG stem cells stained positive for c-Kit, CD90 and 70% colocalized with CD44, Nestin. Similarly, 73.8% c-Kit+ mSMG stem cells colocalized with Sca-1, whereas 80.7% with CD90. Functionally, these cells formed BrdUrd+ salispheres, which differentiated into acinar- and ductal-like structures when cultured in 3D collagen. Both adult human and murine SMG stem cells showed higher expression of ALDH3 than in their non–stem cells and 84% of these cells have measurable ALDH1 activity. Alda-89 infusion in adult mice significantly increased c-Kit+/CD90+ SMG population and BrdUrd+ sphere formation compared with control. Conclusion: This is the first study to characterize expression of different ALDH isozymes in SMG stem cells. In vivo activation of ALDH3 can increase SMG stem cell yield, thus providing a novel means for SMG stem cell enrichment for future stem cell therapy. Clin Cancer Res; 17(23); 7265–72. ©2011 AACR.


International Journal of Radiation Oncology Biology Physics | 2012

Quantitation of Human Papillomavirus DNA in Plasma of Oropharyngeal Carcinoma Patients

Hongbin Cao; Alice Banh; Shirley Kwok; Xiaoli Shi; Simon Wu; Trevor Krakow; Brian Khong; Brindha Bavan; Rajeev Bala; Benjamin A. Pinsky; Dimitrios Colevas; Nader Pourmand; Albert C. Koong; Christina S. Kong; Quynh-Thu Le

PURPOSE To determine whether human papillomavirus (HPV) DNA can be detected in the plasma of patients with HPV-positive oropharyngeal carcinoma (OPC) and to monitor its temporal change during radiotherapy. METHODS AND MATERIALS We used polymerase chain reaction to detect HPV DNA in the culture media of HPV-positive SCC90 and VU147T cells and the plasma of SCC90 and HeLa tumor-bearing mice, non-tumor-bearing controls, and those with HPV-negative tumors. We used real-time quantitative polymerase chain reaction to quantify the plasma HPV DNA in 40 HPV-positive OPC, 24 HPV-negative head-and-neck cancer patients and 10 non-cancer volunteers. The tumor HPV status was confirmed by p16(INK4a) staining and HPV16/18 polymerase chain reaction or HPV in situ hybridization. A total of 14 patients had serial plasma samples for HPV DNA quantification during radiotherapy. RESULTS HPV DNA was detectable in the plasma samples of SCC90- and HeLa-bearing mice but not in the controls. It was detected in 65% of the pretreatment plasma samples from HPV-positive OPC patients using E6/7 quantitative polymerase chain reaction. None of the HPV-negative head-and-neck cancer patients or non-cancer controls had detectable HPV DNA. The pretreatment plasma HPV DNA copy number correlated significantly with the nodal metabolic tumor volume (assessed using (18)F-deoxyglucose positron emission tomography). The serial measurements in 14 patients showed a rapid decline in HPV DNA that had become undetectable at radiotherapy completion. In 3 patients, the HPV DNA level had increased to a discernable level at metastasis. CONCLUSIONS Xenograft studies indicated that plasma HPV DNA is released from HPV-positive tumors. Circulating HPV DNA was detectable in most HPV-positive OPC patients. Thus, plasma HPV DNA might be a valuable tool for identifying relapse.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Hypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to enhance migration and metastasis of melanoma cells

Elizabeth C. Finger; Laura Castellini; Erinn B. Rankin; Marta Vilalta; Adam J. Krieg; Dadi Jiang; Alice Banh; Wayne Zundel; Marianne Broome Powell; Amato J. Giaccia

Significance Scaffold proteins can serve as critical focal points for association of signaling molecules and downstream pathways that regulate tumor growth and invasion. We demonstrate that low oxygen levels, common in solid tumors, can regulate expression of one member of the AKAP scaffold protein family, AKAP12, in melanoma. Genetic inactivation of AKAP12 leads to decreased migration, invasion, and tumor growth in a mouse model of melanoma. Mechanistically, we discovered a switch in protein kinase A (PKA)-regulated phosphorylations under hypoxia that are dependent on AKAP12 and show that PKA is the critical kinase regulating AKAP12-dependent cellular migration. These results provide novel insight into how the tumor microenvironment modulates signal transduction and biological responses through the regulation of a specific variant of the scaffold protein AKAP12. Scaffold proteins are critical hubs within cells that have the ability to modulate upstream signaling molecules and their downstream effectors to fine-tune biological responses. Although they can serve as focal points for association of signaling molecules and downstream pathways that regulate tumorigenesis, little is known about how the tumor microenvironment affects the expression and activity of scaffold proteins. This study demonstrates that hypoxia, a common element of solid tumors harboring low oxygen levels, regulates expression of a specific variant of the scaffold protein AKAP12 (A-kinase anchor protein 12), AKAP12v2, in metastatic melanoma. In turn, through a kinome-wide phosphoproteomic and MS study, we demonstrate that this scaffolding protein regulates a shift in protein kinase A (PKA)-mediated phosphorylation events under hypoxia, causing alterations in tumor cell invasion and migration in vitro, as well as metastasis in an in vivo orthotopic model of melanoma. Mechanistically, the shift in AKAP12-dependent PKA-mediated phosphorylations under hypoxia is due to changes in AKAP12 localization vs. structural differences between its two variants. Importantly, our work defines a mechanism through which a scaffold protein can be regulated by the tumor microenvironment and further explains how a tumor cell can coordinate many critical signaling pathways that are essential for tumor growth through one individual scaffolding protein.


International Journal of Radiation Oncology Biology Physics | 2012

Quantitation of the Human Papillomavirus DNA in the Plasma of Patients with Oropharyngeal Carcinoma

Hongbin Cao; Alice Banh; Shirley Kwok; Xiaoli Shi; Simon Wu; Trevor Krakow; Brian Khong; Brindha Bavan; Rajeev Bala; Benjamin A. Pinsky; Dimitrios Colevas; Nader Pourmand; Albert C. Koong; Christina S. Kong; Quynh-Thu Le

PURPOSE To determine whether human papillomavirus (HPV) DNA can be detected in the plasma of patients with HPV-positive oropharyngeal carcinoma (OPC) and to monitor its temporal change during radiotherapy. METHODS AND MATERIALS We used polymerase chain reaction to detect HPV DNA in the culture media of HPV-positive SCC90 and VU147T cells and the plasma of SCC90 and HeLa tumor-bearing mice, non-tumor-bearing controls, and those with HPV-negative tumors. We used real-time quantitative polymerase chain reaction to quantify the plasma HPV DNA in 40 HPV-positive OPC, 24 HPV-negative head-and-neck cancer patients and 10 non-cancer volunteers. The tumor HPV status was confirmed by p16(INK4a) staining and HPV16/18 polymerase chain reaction or HPV in situ hybridization. A total of 14 patients had serial plasma samples for HPV DNA quantification during radiotherapy. RESULTS HPV DNA was detectable in the plasma samples of SCC90- and HeLa-bearing mice but not in the controls. It was detected in 65% of the pretreatment plasma samples from HPV-positive OPC patients using E6/7 quantitative polymerase chain reaction. None of the HPV-negative head-and-neck cancer patients or non-cancer controls had detectable HPV DNA. The pretreatment plasma HPV DNA copy number correlated significantly with the nodal metabolic tumor volume (assessed using (18)F-deoxyglucose positron emission tomography). The serial measurements in 14 patients showed a rapid decline in HPV DNA that had become undetectable at radiotherapy completion. In 3 patients, the HPV DNA level had increased to a discernable level at metastasis. CONCLUSIONS Xenograft studies indicated that plasma HPV DNA is released from HPV-positive tumors. Circulating HPV DNA was detectable in most HPV-positive OPC patients. Thus, plasma HPV DNA might be a valuable tool for identifying relapse.


International Journal of Radiation Oncology Biology Physics | 2012

Clinical InvestigationQuantitation of Human Papillomavirus DNA in Plasma of Oropharyngeal Carcinoma Patients

Hongbin Cao; Alice Banh; Shirley Kwok; Xiaoli Shi; Simon Wu; Trevor Krakow; Brian Khong; Brindha Bavan; Rajeev Bala; Benjamin A. Pinsky; Dimitrios Colevas; Nader Pourmand; Albert C. Koong; Christina S. Kong; Quynh-Thu Le

PURPOSE To determine whether human papillomavirus (HPV) DNA can be detected in the plasma of patients with HPV-positive oropharyngeal carcinoma (OPC) and to monitor its temporal change during radiotherapy. METHODS AND MATERIALS We used polymerase chain reaction to detect HPV DNA in the culture media of HPV-positive SCC90 and VU147T cells and the plasma of SCC90 and HeLa tumor-bearing mice, non-tumor-bearing controls, and those with HPV-negative tumors. We used real-time quantitative polymerase chain reaction to quantify the plasma HPV DNA in 40 HPV-positive OPC, 24 HPV-negative head-and-neck cancer patients and 10 non-cancer volunteers. The tumor HPV status was confirmed by p16(INK4a) staining and HPV16/18 polymerase chain reaction or HPV in situ hybridization. A total of 14 patients had serial plasma samples for HPV DNA quantification during radiotherapy. RESULTS HPV DNA was detectable in the plasma samples of SCC90- and HeLa-bearing mice but not in the controls. It was detected in 65% of the pretreatment plasma samples from HPV-positive OPC patients using E6/7 quantitative polymerase chain reaction. None of the HPV-negative head-and-neck cancer patients or non-cancer controls had detectable HPV DNA. The pretreatment plasma HPV DNA copy number correlated significantly with the nodal metabolic tumor volume (assessed using (18)F-deoxyglucose positron emission tomography). The serial measurements in 14 patients showed a rapid decline in HPV DNA that had become undetectable at radiotherapy completion. In 3 patients, the HPV DNA level had increased to a discernable level at metastasis. CONCLUSIONS Xenograft studies indicated that plasma HPV DNA is released from HPV-positive tumors. Circulating HPV DNA was detectable in most HPV-positive OPC patients. Thus, plasma HPV DNA might be a valuable tool for identifying relapse.


Cancer Research | 2011

Abstract 2068: A genome-wide siRNA screen reveals various modulators of the IRE1-XBP-1 signaling branch of the unfolded protein response

Jing Zhang; Alice Banh; Priya Jayachandran; Roy Wollman; David E. Solow-Codero; Tobias Meyer; Quynh-Thu Le; Albert C. Koong

The unfolded protein response (UPR) is an essential cellular mechanism orchestrating endoplasmic reticulum (ER) homeostasis under various cytotoxic stresses. Dysregulation of the UPR signaling pathways is linked to multiple human diseases, including cancer. The inositol requiring kinase 1 (IRE1)-X-box binding protein 1 (XBP-1) pathway is the most evolutionarily conserved signaling branch of the UPR. When activated, the endoribonuclease activity of the IRE1 cleaves the XBP-1 mRNA and generates a spliced form of XBP-1 which transcriptionally regulates cell metabolism, proliferation, survival and apoptosis. Here, we employed a genome-wide siRNA screen to systematically identify genes modulating the IRE1-XBP-1 signaling pathway of the UPR. We induced cellular ER stress with bortezomib, a proteasome inhibitor, and monitored the expression of XBP-1-luciferase fusion protein in which luciferase is fused in-frame with the spliced form of XBP-1. We identified over 100 of genes whose downregulation results in inhibition of bortezomib-induced XBP-1 splicing. These genes include diverse subsets of proteins that are involved in mRNA processing, transcription, cell cycle regulation and cell proliferation and differentiation. Furthermore, the screen reveals a connection of several oncogenes and tumor suppressors, such as Myc, Akt and cyclin K, to the UPR, underlining the important role of the IRE1-XBP-1 signaling branch in human cancers. In summary, our data suggest that the UPR is tightly connected with previously unappreciated pathways regulating various cellular processes. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 2068. doi:10.1158/1538-7445.AM2011-2068

Collaboration


Dive into the Alice Banh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert C. Koong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge