Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amato J. Giaccia is active.

Publication


Featured researches published by Amato J. Giaccia.


Cell | 2009

Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling

Kandice R. Levental; Hongmei Yu; Laura Kass; Johnathon N. Lakins; Mikala Egeblad; Janine T. Erler; Sheri F. T. Fong; Katalin Csiszar; Amato J. Giaccia; Wolfgang Weninger; Mitsuo Yamauchi; David L. Gasser; Valerie M. Weaver

Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The importance of ECM remodeling to cancer is appreciated; the relevance of stiffening is less clear. We found that breast tumorigenesis is accompanied by collagen crosslinking, ECM stiffening, and increased focal adhesions. Induction of collagen crosslinking stiffened the ECM, promoted focal adhesions, enhanced PI3 kinase (PI3K) activity, and induced the invasion of an oncogene-initiated epithelium. Inhibition of integrin signaling repressed the invasion of a premalignant epithelium into a stiffened, crosslinked ECM and forced integrin clustering promoted focal adhesions, enhanced PI3K signaling, and induced the invasion of a premalignant epithelium. Consistently, reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence. These data show how collagen crosslinking can modulate tissue fibrosis and stiffness to force focal adhesions, growth factor signaling and breast malignancy.


Nature | 2006

Lysyl oxidase is essential for hypoxia-induced metastasis

Janine T. Erler; Kevin L. Bennewith; Monica Nicolau; Nadja Dornhöfer; Christina S. Kong; Quynh-Thu Le; Jen-Tsan Ashley Chi; Stefanie S. Jeffrey; Amato J. Giaccia

Metastasis is a multistep process responsible for most cancer deaths, and it can be influenced by both the immediate microenvironment (cell–cell or cell–matrix interactions) and the extended tumour microenvironment (for example vascularization). Hypoxia (low oxygen) is clinically associated with metastasis and poor patient outcome, although the underlying processes remain unclear. Microarray studies have shown the expression of lysyl oxidase (LOX) to be elevated in hypoxic human tumour cells. Paradoxically, LOX expression is associated with both tumour suppression and tumour progression, and its role in tumorigenesis seems dependent on cellular location, cell type and transformation status. Here we show that LOX expression is regulated by hypoxia-inducible factor (HIF) and is associated with hypoxia in human breast and head and neck tumours. Patients with high LOX-expressing tumours have poor distant metastasis-free and overall survivals. Inhibition of LOX eliminates metastasis in mice with orthotopically grown breast cancer tumours. Mechanistically, secreted LOX is responsible for the invasive properties of hypoxic human cancer cells through focal adhesion kinase activity and cell to matrix adhesion. Furthermore, LOX may be required to create a niche permissive for metastatic growth. Our findings indicate that LOX is essential for hypoxia-induced metastasis and is a good therapeutic target for preventing and treating metastases.


Molecular and Cellular Biology | 2002

Regulation of Hypoxia-Inducible Factor 1α Expression and Function by the Mammalian Target of Rapamycin

Christine C. Hudson; Mei Liu; Gary G. Chiang; Diane M. Otterness; Dawn C. Loomis; Fiona Kaper; Amato J. Giaccia; Robert T. Abraham

ABSTRACT Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription factor containing an inducibly expressed HIF-1α subunit and a constititutively expressed HIF-1β subunit. Under hypoxic conditions, the HIF-1α subunit accumulates due to a decrease in the rate of proteolytic degradation, and the resulting HIF-1α-HIF-1β heterodimers undergo posttranslational modifications that promote transactivation. Recent studies suggest that amplified signaling through phosphoinositide 3-kinase, and its downstream target, mTOR, enhances HIF-1-dependent gene expression in certain cell types. In the present study, we have explored further the linkage between mTOR and HIF-1 in PC-3 prostate cancer cells treated with hypoxia or the hypoxia mimetic agent, CoCl2. Pretreatment of PC-3 cells with the mTOR inhibitor, rapamycin, inhibited both the accumulation of HIF-1α and HIF-1-dependent transcription induced by hypoxia or CoCl2. Transfection of these cells with wild-type mTOR enhanced HIF-1 activation by hypoxia or CoCl2, while expression of a rapamycin-resistant mTOR mutant rendered both HIF-1α stabilization and HIF-1 transactivating function refractory to inhibition by rapamycin. Studies with GAL4-HIF-1α fusion proteins pinpointed the oxygen-dependent degradation domain as a critical target for the rapamycin-sensitive, mTOR-dependent signaling pathway leading to HIF-1α stabilization by CoCl2. These studies position mTOR as an upstream activator of HIF-1 function in cancer cells and suggest that the antitumor activity of rapamycin is mediated, in part, through the inhibition of cellular responses to hypoxic stress.


Cell Death & Differentiation | 2008

The role of hypoxia-inducible factors in tumorigenesis

Erinn B. Rankin; Amato J. Giaccia

Hypoxia-inducible factors (HIFs) are essential mediators of the cellular oxygen-signaling pathway. They are heterodimeric transcription factors consisting of an oxygen-sensitive alpha subunit (HIF-α) and a constitutive beta subunit (HIF-β) that facilitate both oxygen delivery and adaptation to oxygen deprivation by regulating the expression of genes that control glucose uptake, metabolism, angiogenesis, erythropoiesis, cell proliferation, and apoptosis. In most experimental models, the HIF pathway is a positive regulator of tumor growth as its inhibition often results in tumor suppression. In clinical samples, HIF is found elevated and correlates with poor patient prognosis in a variety of cancers. In summary, HIF regulates multiple aspects of tumorigenesis, including angiogenesis, proliferation, metabolism, metastasis, differentiation, and response to radiation therapy, making it a critical regulator of the malignant phenotype.


PLOS Medicine | 2006

Gene expression programs in response to hypoxia: Cell type specificity and prognostic significance in human cancers

Jen-Tsan Chi; Zhen Wang; Dimitry S.A. Nuyten; Edwin Rodriguez; Marci E. Schaner; Ali Salim; Yun Wang; Gunnar B. Kristensen; Åslaug Helland; Anne Lise Børresen-Dale; Amato J. Giaccia; Michael T. Longaker; Trevor Hastie; George P. Yang; Marc J. van de Vijver; Patrick O. Brown

Background Inadequate oxygen (hypoxia) triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF), plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1α protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. Methods and Findings We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1α RNA in renal cells, and it could be diminished by reducing HIF-1α expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. Conclusions The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis in breast and ovarian cancer.


Nature Reviews Drug Discovery | 2003

HIF-1 as a target for drug development

Amato J. Giaccia; Bronwyn G. Siim; Randall S. Johnson

Sensing and responding to fluxes in oxygen tension is perhaps the single most important variable in physiology, and animal tissues have developed a number of essential mechanisms to cope with the stress of low physiological oxygen levels, or hypoxia. Among these coping mechanisms is the response mediated by the hypoxia-inducible transcription factor, or HIF-1. HIF-1 is an essential component in changing the transcriptional repertoire of tissues as oxygen levels drop, and could prove to be a very important target for drug development, as treatments evolve for diseases, such as cancer, heart disease and stroke, in which hypoxia is a central aspect.


International Journal of Radiation Biology | 2006

Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy.

Jeffrey M. Arbeit; J. Martin Brown; K.S. Clifford Chao; J. Donald Chapman; William C. Eckelman; Anthony Fyles; Amato J. Giaccia; Richard P. Hill; Cameron J. Koch; Murali C. Krishna; Kenneth A. Krohn; Jason S. Lewis; Ralph P. Mason; Giovanni Melillo; Anwar R. Padhani; Garth Powis; Joseph G. Rajendran; Richard Reba; Simon P. Robinson; Gregg L. Semenza; Harold M. Swartz; Peter Vaupel; David J. Yang; James L. Tatum

PURPOSE The Cancer Imaging Program of the National Cancer Institute convened a workshop to assess the current status of hypoxia imaging, to assess what is known about the biology of hypoxia as it relates to cancer and cancer therapy, and to define clinical scenarios in which in vivo hypoxia imaging could prove valuable. RESULTS Hypoxia, or low oxygenation, has emerged as an important factor in tumor biology and response to cancer treatment. It has been correlated with angiogenesis, tumor aggressiveness, local recurrence, and metastasis, and it appears to be a prognostic factor for several cancers, including those of the cervix, head and neck, prostate, pancreas, and brain. The relationship between tumor oxygenation and response to radiation therapy has been well established, but hypoxia also affects and is affected by some chemotherapeutic agents. Although hypoxia is an important aspect of tumor physiology and response to treatment, the lack of simple and efficient methods to measure and image oxygenation hampers further understanding and limits their prognostic usefulness. There is no gold standard for measuring hypoxia; Eppendorf measurement of pO(2) has been used, but this method is invasive. Recent studies have focused on molecular markers of hypoxia, such as hypoxia inducible factor 1 (HIF-1) and carbonic anhydrase isozyme IX (CA-IX), and on developing noninvasive imaging techniques. CONCLUSIONS This workshop yielded recommendations on using hypoxia measurement to identify patients who would respond best to radiation therapy, which would improve treatment planning. This represents a narrow focus, as hypoxia measurement might also prove useful in drug development and in increasing our understanding of tumor biology.


Cell | 2004

JunD Reduces Tumor Angiogenesis by Protecting Cells from Oxidative Stress

Damien Gerald; Edurne Berra; Yves Frapart; Denise A. Chan; Amato J. Giaccia; Daniel Mansuy; Jacques Pouysségur; Moshe Yaniv; Fatima Mechta-Grigoriou

Reactive oxygen species (ROS) are implicated in the pathophysiology of various diseases, including cancer. In this study, we show that JunD, a member of the AP-1 family of transcription factors, reduces tumor angiogenesis by limiting Ras-mediated production of ROS. Using junD-deficient cells, we demonstrate that JunD regulates genes involved in antioxidant defense, H2O2 production, and angiogenesis. The accumulation of H2O2 in junD-/- cells decreases the availability of FeII and reduces the activity of HIF prolyl hydroxylases (PHDs) that target hypoxia-inducible factors-alpha (HIFalpha) for degradation. Subsequently, HIF-alpha proteins accumulate and enhance the transcription of VEGF-A, a potent proangiogenic factor. Our study uncovers the mechanism by which JunD protects cells from oxidative stress and exerts an antiangiogenic effect. Furthermore, we provide new insights into the regulation of PHD activity, allowing immediate reactive adaptation to changes in O2 or iron levels in the cell.


Cancer and Metastasis Reviews | 2004

Hypoxia, Gene Expression, and Metastasis

Denise A. Chan; Amato J. Giaccia

Solid tumors possess malformed vasculature that results in the exposure of tumor cells to a low oxygen environment. Tumor hypoxia has been demonstrated in human and mouse tumors through the use of oxygen microelectrodes, hypoxic specific biomarkers, specific transcriptional changes induced by hypoxia, and secreted proteins. While many elegant experiments have demonstrated that hypoxia enhances metastatic potential, it is still unknown what mechanisms are involved in this enhancement. In this review, we discuss the clinical and basic science studies that support an important role for hypoxia in increasing the metastatic potential of tumor cells by promoting tissue remodeling, inducing angiogenesis and reducing apoptosis. Particular emphasis is given to recent findings that provide insight to the role of hypoxia in the metastatic process.


Developmental Cell | 2002

Inhibition of PPARγ2 Gene Expression by the HIF-1-Regulated Gene DEC1/Stra13

Zhong Yun; Heather L. Maecker; Randall S. Johnson; Amato J. Giaccia

Cellular differentiation involves transcriptional responses to environmental stimuli. Adipocyte differentiation is inhibited under hypoxic conditions, indicating that oxygen (O(2)) is an important physiological regulator of adipogenesis. Hypoxia inhibits PPAR gamma 2 nuclear hormone receptor transcription, and overexpression of PPAR gamma 2 or C/EBP beta stimulates adipogenesis under hypoxia. Mouse embryonic fibroblasts deficient in hypoxia-inducible transcription factor 1 alpha (HIF-1 alpha) are refractory to hypoxia-mediated inhibition of adipogenesis. The HIF-1-regulated gene DEC1/Stra13, a member of the Drosophila hairy/Enhancer of split transcription repressor family, represses PPAR gamma 2 promoter activation and functions as an effector of hypoxia-mediated inhibition of adipogenesis. These data indicate that an O(2)-sensitive signaling mechanism regulates adipogenesis. Thus, agents that regulate HIF-1 activity or O(2) sensing may be used to inhibit adipogenesis and control obesity.

Collaboration


Dive into the Amato J. Giaccia's collaboration.

Top Co-Authors

Avatar

Albert C. Koong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick D. Sutphin

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge