Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice Bartolini is active.

Publication


Featured researches published by Alice Bartolini.


The Journal of Neuroscience | 2009

Laminar Fate and Phenotype Specification of Cerebellar GABAergic Interneurons

Ketty Leto; Alice Bartolini; Yukio Yanagawa; Kunihiko Obata; Lorenzo Magrassi; Karl Schilling; Ferdinando Rossi

In most CNS regions, the variety of inhibitory interneurons originates from separate pools of progenitors residing in discrete germinal domains, where they become committed to specific phenotypes and positions during their last mitosis. We show here that GABAergic interneurons of the rodent cerebellum are generated through a different mechanism. Progenitors for these interneurons delaminate from the ventricular neuroepithelium of the embryonic cerebellar primordium and continue to proliferate in the prospective white matter during late embryonic and postnatal development. Young postmitotic interneurons do not migrate immediately to their final destination, but remain in the prospective white matter for several days. The different interneuron categories are produced according to a continuous inside-out positional sequence, and cell identity and laminar placement in the cerebellar cortex are temporally related to birth date. However, terminal commitment does not occur while precursors are still proliferating, and postmitotic cells heterochronically transplanted to developing cerebella consistently adopt host-specific phenotypes and positions. However, solid grafts of prospective white matter implanted into the adult cerebellum, when interneuron genesis has ceased, produce interneuron types characteristic of the donor age. Therefore, specification of cerebellar GABAergic interneurons occurs through a hitherto unknown process, in which postmitotic neurons maintain broad developmental potentialities and their phenotypic choices are dictated by instructive cues provided by the microenvironment of the prospective white matter. Whereas in most CNS regions the repertoire of inhibitory interneurons is produced by recruiting precursors from different origins, in the cerebellum it is achieved by creating phenotypic diversity from a single source.


Cancer Discovery | 2016

Acquired Resistance to the TRK Inhibitor Entrectinib in Colorectal Cancer

Mariangela Russo; Sandra Misale; Ge Wei; Giulia Siravegna; Giovanni Crisafulli; Luca Lazzari; Giorgio Corti; Giuseppe Rospo; Luca Novara; Benedetta Mussolin; Alice Bartolini; Nicholas Cam; Roopal Patel; Shunqi Yan; Robert Shoemaker; Robert Wild; Federica Di Nicolantonio; Andrea Sartore-Bianchi; Gang Li; Salvatore Siena; Alberto Bardelli

UNLABELLED Entrectinib is a first-in-class pan-TRK kinase inhibitor currently undergoing clinical testing in colorectal cancer and other tumor types. A patient with metastatic colorectal cancer harboring an LMNA-NTRK1 rearrangement displayed a remarkable response to treatment with entrectinib, which was followed by the emergence of resistance. To characterize the molecular bases of the patients relapse, circulating tumor DNA (ctDNA) was collected longitudinally during treatment, and a tissue biopsy, obtained before entrectinib treatment, was transplanted in mice (xenopatient), which then received the same entrectinib regimen until resistance developed. Genetic profiling of ctDNA and xenopatient samples showed acquisition of two point mutations in the catalytic domain of NTRK1, p.G595R and p.G667C. Biochemical and pharmacologic analysis in multiple preclinical models confirmed that either mutation renders the TRKA kinase insensitive to entrectinib. These findings can be immediately exploited to design next-generation TRKA inhibitors. SIGNIFICANCE We provide proof of principle that analyses of xenopatients (avatar) and liquid biopsies allow the identification of drug resistance mechanisms in parallel with clinical treatment of an individual patient. We describe for the first time that p.G595R and p.G667C TRKA mutations drive acquired resistance to entrectinib in colorectal cancers carrying NTRK1 rearrangements.


Nature | 2017

Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth

Giovanni Germano; Simona Lamba; Giuseppe Rospo; Ludovic Barault; Alessandro Magri; Federica Maione; Mariangela Russo; Giovanni Crisafulli; Alice Bartolini; Giulia Lerda; Giulia Siravegna; Benedetta Mussolin; Roberta Frapolli; Monica Montone; Federica Morano; Filippo de Braud; Nabil Amirouchene-Angelozzi; Silvia Marsoni; Maurizio D’Incalci; Armando Orlandi; Enrico Giraudo; Andrea Sartore-Bianchi; Salvatore Siena; Filippo Pietrantonio; Federica Di Nicolantonio; Alberto Bardelli

Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.


Cancer Research | 2016

Molecular landscape of acquired resistance to targeted therapy combinations in BRAF mutant colorectal cancer

Daniele Oddo; Erin M. Sennott; Ludovic Barault; Emanuele Valtorta; Sabrina Arena; Andrea Cassingena; Genny Filiciotto; Giulia Marzolla; Elena Elez; Robin Van Geel; Alice Bartolini; Giovanni Crisafulli; Valentina Boscaro; Jason T. Godfrey; Michela Buscarino; Carlotta Cancelliere; Giorgio Corti; Mauro Truini; Giulia Siravegna; Julieta Grasselli; Margherita Gallicchio; René Bernards; Jan H. M. Schellens; Josep Tabernero; Jeffrey A. Engelman; Andrea Sartore-Bianchi; Alberto Bardelli; Salvatore Siena; Ryan B. Corcoran; Federica Di Nicolantonio

Although recent clinical trials of BRAF inhibitor combinations have demonstrated improved efficacy in BRAF-mutant colorectal cancer, emergence of acquired resistance limits clinical benefit. Here, we undertook a comprehensive effort to define mechanisms underlying drug resistance with the goal of guiding development of therapeutic strategies to overcome this limitation. We generated a broad panel of BRAF-mutant resistant cell line models across seven different clinically relevant drug combinations. Combinatorial drug treatments were able to abrogate ERK1/2 phosphorylation in parental-sensitive cells, but not in their resistant counterparts, indicating that resistant cells escaped drug treatments through one or more mechanisms leading to biochemical reactivation of the MAPK signaling pathway. Genotyping of resistant cells identified gene amplification of EGFR, KRAS, and mutant BRAF, as well as acquired mutations in KRAS, EGFR, and MAP2K1 These mechanisms were clinically relevant, as we identified emergence of a KRAS G12C mutation and increase of mutant BRAF V600E allele frequency in the circulating tumor DNA of a patient at relapse from combined treatment with BRAF and MEK inhibitors. To identify therapeutic combinations capable of overcoming drug resistance, we performed a systematic assessment of candidate therapies across the panel of resistant cell lines. Independent of the molecular alteration acquired upon drug pressure, most resistant cells retained sensitivity to vertical MAPK pathway suppression when combinations of ERK, BRAF, and EGFR inhibitors were applied. These therapeutic combinations represent promising strategies for future clinical trials in BRAF-mutant colorectal cancer. Cancer Res; 76(15); 4504-15. ©2016 AACR.


Nature Communications | 2016

Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer

Beth O. Van Emburgh; Sabrina Arena; Giulia Siravegna; Luca Lazzari; Giovanni Crisafulli; Giorgio Corti; Benedetta Mussolin; Federica Baldi; Michela Buscarino; Alice Bartolini; Emanuele Valtorta; Joana Vidal; Beatriz Bellosillo; Giovanni Germano; Filippo Pietrantonio; Agostino Ponzetti; Joan Albanell; Salvatore Siena; Andrea Sartore-Bianchi; Federica Di Nicolantonio; Clara Montagut; Alberto Bardelli

Blockade of the epidermal growth factor receptor (EGFR) with the monoclonal antibodies cetuximab or panitumumab is effective in a subset of colorectal cancers (CRCs), but the emergence of resistance limits the efficacy of these therapeutic agents. At relapse, the majority of patients develop RAS mutations, while a subset acquires EGFR extracellular domain (ECD) mutations. Here we find that patients who experience greater and longer responses to EGFR blockade preferentially develop EGFR ECD mutations, while RAS mutations emerge more frequently in patients with smaller tumour shrinkage and shorter progression-free survival. In circulating cell-free tumour DNA of patients treated with anti-EGFR antibodies, RAS mutations emerge earlier than EGFR ECD variants. Subclonal RAS but not EGFR ECD mutations are present in CRC samples obtained before exposure to EGFR blockade. These data indicate that clonal evolution of drug-resistant cells is associated with the clinical outcome of CRC patients treated with anti-EGFR antibodies.


Journal of Controlled Release | 2013

Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings.

Monica Loi; Daniela Di Paolo; Marco Soster; Chiara Brignole; Alice Bartolini; Laura Emionite; Jessica Sun; Pamela Becherini; Flavio Curnis; Andrea Petretto; Monica Sani; Alessandro Gori; Marco Milanese; Claudio Gambini; Renato Longhi; Michele Cilli; Theresa M. Allen; Federico Bussolino; Wadih Arap; Renata Pasqualini; Angelo Corti; Mirco Ponzoni; Serena Marchiò; Fabio Pastorino

Molecular targeting of drug delivery nanocarriers is expected to improve their therapeutic index while decreasing their toxicity. Here we report the identification and characterization of novel peptide ligands specific for cells present in high-risk neuroblastoma (NB), a childhood tumor mostly refractory to current therapies. To isolate such targeting moieties, we performed combined in vitro/ex-vivo phage display screenings on NB cell lines and on tumors derived from orthotopic mouse models of human NB. By designing proper subtractive protocols, we identified phage clones specific either for the primary tumor, its metastases, or for their respective stromal components. Globally, we isolated 121 phage-displayed NB-binding peptides: 26 bound the primary tumor, 15 the metastatic mass, 57 and 23 their respective microenvironments. Of these, five phage clones were further validated for their specific binding ex-vivo to biopsies from stage IV NB patients and to NB tumors derived from mice. All five clones also targeted tumor cells and vasculature in vivo when injected into NB-bearing mice. Coupling of the corresponding targeting peptides with doxorubicin-loaded liposomes led to a significant inhibition in tumor volume and enhanced survival in preclinical NB models, thereby paving the way to their clinical development.


Neurobiology of Disease | 2011

G-CSF administration to adult mice stimulates the proliferation of microglia but does not modify the outcome of ischemic injury

Alice Bartolini; Maria Claudia Vigliani; Lorenzo Magrassi; Alessandro Vercelli; Ferdinando Rossi

Recent evidence suggests that adult bone marrow stem cells reduce tissue damage and promote repair following CNS ischemic injury. Since granulocyte-colony stimulating factor (G-CSF) mobilizes hematopoietic stem cells to the circulating compartment, here we tested whether administration of this drug modifies the outcome of a permanent occlusion of the middle cerebral artery in adult mice. To elucidate the behavior and fate of blood-borne cells in the ischemic brain, we produced chimeric animals, in which hematopoietic derivatives are genetically tagged. G-CSF administration enhances the proliferation of microglia in the uninjured CNS but has no effect on the amount of hematopoietic cells that infiltrate the ischemic tissue and on the size of the lesion. The blood-borne elements acquire different mesodermal identities but fail to adopt neural phenotypes, even though they occasionally fuse with Purkinje neurons. These results indicate that G-CSF treatment does not exert a significant beneficial effect on the ischemic injury.


Embo Molecular Medicine | 2012

A complex of α6 integrin and E‐cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin‐like 6

Serena Marchiò; Marco Soster; Sabrina Cardaci; Andrea Muratore; Alice Bartolini; Vanessa Barone; Dario Ribero; Maria Gaia Monti; Paola Bovino; Jessica Sun; Raffaella Giavazzi; Sofia Asioli; Paola Cassoni; Lorenzo Capussotti; Piero Pucci; Antonella Bugatti; Marco Rusnati; Renata Pasqualini; Wadih Arap; Federico Bussolino

Homing of colorectal cancer (CRC) cells to the liver is a non‐random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis‐specific peptide ligand (CGIYRLRSC) that binds a complex of E‐cadherin and α6 integrin on the surface of CRC cells. We identify angiopoietin‐like 6 protein as a peptide‐mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin‐like 6 and tumoural α6 integrin/E‐cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α6 integrin and E‐cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC.


Development | 2011

Modulation of cell-cycle dynamics is required to regulate the number of cerebellar GABAergic interneurons and their rhythm of maturation

Ketty Leto; Alice Bartolini; Alessandra Di Gregorio; Daniele Imperiale; Annarita De Luca; Elena Parmigiani; Robert K. Filipkowski; Leszek Kaczmarek; Ferdinando Rossi

The progenitors of cerebellar GABAergic interneurons proliferate up to postnatal development in the prospective white matter, where they give rise to different neuronal subtypes, in defined quantities and according to precise spatiotemporal sequences. To investigate the mechanisms that regulate the specification of distinct interneuron phenotypes, we examined mice lacking the G1 phase-active cyclin D2. It has been reported that these mice show severe reduction of stellate cells, the last generated interneuron subtype. We found that loss of cyclin D2 actually impairs the whole process of interneuron genesis. In the mutant cerebella, progenitors of the prospective white matter show reduced proliferation rates and enhanced tendency to leave the cycle, whereas young postmitotic interneurons undergo severe delay of their maturation and migration. As a consequence, the progenitor pool is precociously exhausted and the number of interneurons is significantly reduced, although molecular layer interneurons are more affected than those of granular layer or deep nuclei. The characteristic inside-out sequence of interneuron placement in the cortical layers is also reversed, so that later born cells occupy deeper positions than earlier generated ones. Transplantation experiments show that the abnormalities of cyclin D2–/– interneurons are largely caused by cell-autonomous mechanisms. Therefore, cyclin D2 is not required for the specification of particular interneuron subtypes. Loss of this protein, however, disrupts regulatory mechanisms of cell cycle dynamics that are required to determine the numbers of interneurons of different types and impairs their rhythm of maturation and integration in the cerebellar circuitry.


The Cerebellum | 2008

Development of cerebellar GABAergic interneurons: origin and shaping of the "minibrain" local connections.

Ketty Leto; Alice Bartolini; Ferdinando Rossi

The cerebellar circuits comprise a limited number of neuronal phenotypes embedded in a defined cytoarchitecture and generated according to specific spatio-temporal patterns. The local GABAergic network is composed of several interneuron phenotypes that play essential roles in information processing by modulating the activity of cerebellar cortical inputs and outputs. A major issue in the study of cerebellar development is to understand the mechanisms that underlie the generation of different interneuron classes and regulate their placement in the cerebellar architecture and integration in the cortico-nuclear network. Recent findings indicate that the variety of cerebellar interneurons derives from a single population of multipotent progenitors whose fate choices are determined by instructive environmental information. Such a strategy, which is unique for the cerebellum along the neuraxis, allows great flexibility in the control of the quality and quantity of GABAergic interneurons that are produced, thus facilitating the adaptive shaping of the cerebellar network to specific functional demands.

Collaboration


Dive into the Alice Bartolini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvatore Siena

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge