Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulia Siravegna is active.

Publication


Featured researches published by Giulia Siravegna.


Science Translational Medicine | 2014

Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies

Chetan Bettegowda; Mark Sausen; Rebecca J. Leary; Isaac Kinde; Yuxuan Wang; Nishant Agrawal; Bjarne Bartlett; Hao Wang; Brandon Luber; Rhoda M. Alani; Emmanuel S. Antonarakis; Nilofer Saba Azad; Alberto Bardelli; Henry Brem; John L. Cameron; Clarence Lee; Leslie A. Fecher; Gary L. Gallia; Peter Gibbs; Dung Le; Robert L. Giuntoli; Michael Goggins; Michael D. Hogarty; Matthias Holdhoff; Seung-Mo Hong; Yuchen Jiao; Hartmut H. Juhl; Jenny J. Kim; Giulia Siravegna; Daniel A. Laheru

Circulating tumor DNA can be used in a variety of clinical and investigational settings across tumor types and stages for screening, diagnosis, and identifying mutations responsible for therapeutic response and drug resistance. Circulating Tumor DNA for Early Detection and Managing Resistance Cancer evolves over time, without any warning signs. Similarly, the development of resistance to therapy generally becomes apparent only when there are obvious signs of tumor growth, at which point the patient may have lost valuable time. Although a repeat biopsy may be able to identify drug-resistant mutations before the tumor has a chance to regrow, it is usually not feasible to do many repeat biopsies. Now, two studies are demonstrating the utility of monitoring the patients’ blood for tumor DNA to detect cancer at the earliest stages of growth or resistance. In one study, Bettegowda and coauthors showed that sampling a patient’s blood may be sufficient to yield information about the tumor’s genetic makeup, even for many early-stage cancers, without a need for an invasive procedure to collect tumor tissue, such as surgery or endoscopy. The authors demonstrated the presence of circulating DNA from many types of tumors that had not yet metastasized or released detectable cells into the circulation. They could detect more than 50% of patients across 14 tumor types at the earliest stages, when these cancers may still be curable, suggesting that a blood draw could be a viable screening approach to detecting most cancers. They also showed that in patients with colorectal cancer, the information derived from circulating tumor DNA could be used to determine the optimal course of treatment and identify resistance to epidermal growth factor receptor (EGFR) blockade. Meanwhile, Misale and colleagues illustrated a way to use this information to overcome treatment resistance. These authors also found that mutations associated with EGFR inhibitor resistance could be detected in the blood of patients with colorectal cancer. In addition, they demonstrated that adding MEK inhibitors, another class of anticancer drugs, can successfully overcome resistance when given in conjunction with the EGFR inhibitors. Thus, the studies from Bettegowda and Misale and their colleagues show the effectiveness of analyzing circulating DNA from a variety of tumors and highlight the potential investigational and clinical applications of this novel technology for early detection, monitoring resistance, and devising treatment plans to overcome resistance. The development of noninvasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital polymerase chain reaction–based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. We found that ctDNA was detectable in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers. In patients with localized tumors, ctDNA was detected in 73, 57, 48, and 50% of patients with colorectal cancer, gastroesophageal cancer, pancreatic cancer, and breast adenocarcinoma, respectively. ctDNA was often present in patients without detectable circulating tumor cells, suggesting that these two biomarkers are distinct entities. In a separate panel of 206 patients with metastatic colorectal cancers, we showed that the sensitivity of ctDNA for detection of clinically relevant KRAS gene mutations was 87.2% and its specificity was 99.2%. Finally, we assessed whether ctDNA could provide clues into the mechanisms underlying resistance to epidermal growth factor receptor blockade in 24 patients who objectively responded to therapy but subsequently relapsed. Twenty-three (96%) of these patients developed one or more mutations in genes involved in the mitogen-activated protein kinase pathway. Together, these data suggest that ctDNA is a broadly applicable, sensitive, and specific biomarker that can be used for a variety of clinical and research purposes in patients with multiple different types of cancer.


Nature | 2012

Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer

Sandra Misale; Rona Yaeger; Sebastijan Hobor; Elisa Scala; Manickam Janakiraman; David Liska; Emanuele Valtorta; Roberta Schiavo; Michela Buscarino; Giulia Siravegna; Katia Bencardino; Andrea Cercek; Chin Tung Chen; Silvio Veronese; Carlo Zanon; Andrea Sartore-Bianchi; Marcello Gambacorta; Margherita Gallicchio; Efsevia Vakiani; Valentina Boscaro; Enzo Medico; Martin R. Weiser; Salvatore Siena; Federica Di Nicolantonio; David B. Solit; Alberto Bardelli

A main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood. Here we show that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance, but resistant cells remained sensitive to combinatorial inhibition of EGFR and mitogen-activated protein-kinase kinase (MEK). Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6 out of 10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab-treated patients as early as 10 months before radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.


Cancer Discovery | 2013

Amplification of the MET Receptor Drives Resistance to Anti-EGFR Therapies in Colorectal Cancer

Alberto Bardelli; Simona Corso; Andrea Bertotti; Sebastijan Hobor; Emanuele Valtorta; Giulia Siravegna; Andrea Sartore-Bianchi; Elisa Scala; Andrea Cassingena; Davide Zecchin; Maria Apicella; Giorgia Migliardi; Francesco Galimi; Calogero Lauricella; Carlo Zanon; Timothy Pietro Suren Perera; Silvio Veronese; Giorgio Corti; Alessio Amatu; Marcello Gambacorta; Luis A. Diaz; Mark Sausen; Victor E. Velculescu; Paolo M. Comoglio; Livio Trusolino; Federica Di Nicolantonio; Silvia Giordano; Salvatore Siena

EGF receptor (EGFR)-targeted monoclonal antibodies are effective in a subset of metastatic colorectal cancers. Inevitably, all patients develop resistance, which occurs through emergence of KRAS mutations in approximately 50% of the cases. We show that amplification of the MET proto-oncogene is associated with acquired resistance in tumors that do not develop KRAS mutations during anti-EGFR therapy. Amplification of the MET locus was present in circulating tumor DNA before relapse was clinically evident. Functional studies show that MET activation confers resistance to anti-EGFR therapy both in vitro and in vivo. Notably, in patient-derived colorectal cancer xenografts, MET amplification correlated with resistance to EGFR blockade, which could be overcome by MET kinase inhibitors. These results highlight the role of MET in mediating primary and secondary resistance to anti-EGFR therapies in colorectal cancer and encourage the use of MET inhibitors in patients displaying resistance as a result of MET amplification.


Nature Medicine | 2015

Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients

Giulia Siravegna; Benedetta Mussolin; Michela Buscarino; Giorgio Corti; Andrea Cassingena; Giovanni Crisafulli; Agostino Ponzetti; Chiara Cremolini; Alessio Amatu; Calogero Lauricella; Simona Lamba; Sebastijan Hobor; Antonio Avallone; Emanuele Valtorta; Giuseppe Rospo; Enzo Medico; Valentina Motta; Carlotta Antoniotti; Fabiana Tatangelo; Beatriz Bellosillo; Silvio Veronese; Alfredo Budillon; Clara Montagut; Patrizia Racca; Silvia Marsoni; Alfredo Falcone; Ryan B. Corcoran; Federica Di Nicolantonio; Fotios Loupakis; Salvatore Siena

Colorectal cancers (CRCs) evolve by a reiterative process of genetic diversification and clonal evolution. The molecular profile of CRC is routinely assessed in surgical or bioptic samples. Genotyping of CRC tissue has inherent limitations; a tissue sample represents a single snapshot in time, and it is subjected to spatial selection bias owing to tumor heterogeneity. Repeated tissue samples are difficult to obtain and cannot be used for dynamic monitoring of disease progression and response to therapy. We exploited circulating tumor DNA (ctDNA) to genotype colorectal tumors and track clonal evolution during treatment with the epidermal growth factor receptor (EGFR)-specific antibodies cetuximab or panitumumab. We identified alterations in ctDNA of patients with primary or acquired resistance to EGFR blockade in the following genes: KRAS, NRAS, MET, ERBB2, FLT3, EGFR and MAP2K1. Mutated KRAS clones, which emerge in blood during EGFR blockade, decline upon withdrawal of EGFR-specific antibodies, indicating that clonal evolution continues beyond clinical progression. Pharmacogenomic analysis of CRC cells that had acquired resistance to cetuximab reveals that upon antibody withdrawal KRAS clones decay, whereas the population regains drug sensitivity. ctDNA profiles of individuals who benefit from multiple challenges with anti-EGFR antibodies exhibit pulsatile levels of mutant KRAS. These results indicate that the CRC genome adapts dynamically to intermittent drug schedules and provide a molecular explanation for the efficacy of rechallenge therapies based on EGFR blockade.


Nature Medicine | 2016

Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition

Aaron N. Hata; Matthew J. Niederst; Hannah L. Archibald; Maria Gomez-Caraballo; Faria Siddiqui; Hillary Mulvey; Yosef E. Maruvka; Fei Ji; Hyo Eun C Bhang; Viveksagar Krishnamurthy Radhakrishna; Giulia Siravegna; Haichuan Hu; Sana Raoof; Elizabeth L. Lockerman; Anuj Kalsy; Dana Lee; Celina L. Keating; David A. Ruddy; Leah Damon; Adam S. Crystal; Carlotta Costa; Zofia Piotrowska; Alberto Bardelli; Anthony John Iafrate; Ruslan I. Sadreyev; Frank Stegmeier; Gad Getz; Lecia V. Sequist; Anthony C. Faber; Jeffrey A. Engelman

Although mechanisms of acquired resistance of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here we observe that acquired resistance caused by the EGFRT790M gatekeeper mutation can occur either by selection of pre-existing EGFRT790M-positive clones or via genetic evolution of initially EGFRT790M-negative drug-tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug-tolerant cells had a diminished apoptotic response to third-generation EGFR inhibitors that target EGFRT790M; treatment with navitoclax, an inhibitor of the anti-apoptotic factors BCL-xL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor–resistant patient tumors. These findings provide evidence that clinically relevant drug-resistant cancer cells can both pre-exist and evolve from drug-tolerant cells, and they point to therapeutic opportunities to prevent or overcome resistance in the clinic.


Lancet Oncology | 2016

Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial

Andrea Sartore-Bianchi; Livio Trusolino; Cosimo Martino; Katia Bencardino; Sara Lonardi; Francesca Bergamo; Vittorina Zagonel; Francesco Leone; Ilaria Depetris; Erika Martinelli; Teresa Troiani; Fortunato Ciardiello; Patrizia Racca; Andrea Bertotti; Giulia Siravegna; Valter Torri; Alessio Amatu; Silvia Ghezzi; Giovanna Marrapese; Laura Palmeri; Emanuele Valtorta; Andrea Cassingena; Calogero Lauricella; Angelo Vanzulli; Daniele Regge; Silvio Veronese; Paolo M. Comoglio; Alberto Bardelli; Silvia Marsoni; Salvatore Siena

BACKGROUND We previously found that dual HER2 blockade with trastuzumab and lapatinib led to inhibition of tumour growth in patient-derived xenografts of HER2-amplified metastatic colorectal cancer. In this study, we aimed to assess the antitumour activity of trastuzumab and lapatinib in patients with HER2-positive colorectal cancer. METHODS HERACLES was a proof-of-concept, multicentre, open-label, phase 2 trial done at four Italian academic cancer centres. We enrolled adult patients with KRAS exon 2 (codons 12 and 13) wild-type and HER2-positive metastatic colorectal cancer refractory to standard of care (including cetuximab or panitumumab), an Eastern Cooperative Oncology Group performance status of 0 or 1, and at least one measurable lesion. We defined HER2 positivity in tumour samples by use of immunohistochemistry and fluorescence in-situ hybridisation in accordance with our previously validated colorectal cancer-specific diagnostic criteria. Eligible patients received intravenous trastuzumab at 4 mg/kg loading dose followed by 2 mg/kg once per week, and oral lapatinib at 1000 mg per day until evidence of disease progression. The primary endpoint was the proportion of patients achieving an objective response (defined as complete response or partial response), which was assessed by independent central review in the intention-to-treat population. This trial is registered with EudraCT, number 2012-002128-33. FINDINGS Between Aug 27, 2012, and May 15, 2015, we screened 914 patients with KRAS exon 2 (codons 12 and 13) wild-type metastatic colorectal cancer and identified 48 (5%) patients with HER2-positive tumours, although two died before enrolment. Of these patients, 27 were eligible for the trial. All were evaluable for response. At the time of data cutoff on Oct 15, 2015, with a median follow-up of 94 weeks (IQR 51-127), eight (30%, 95% CI 14-50) of 27 patients had achieved an objective response, with one patient (4%, 95% CI -3 to 11) achieving a complete response, and seven (26%, 95% CI 9-43) achieving partial responses; 12 (44%, 95% CI 25-63) patients had stable disease. Six (22%) of 27 patients had grade 3 adverse events, which consisted of fatigue in four patients, skin rash in one patient, and increased bilirubin concentration in one patient. No grade 4 or 5 adverse events were reported. We detected no drug-related serious adverse events. INTERPRETATION The combination of trastuzumab and lapatinib is active and well tolerated in treatment-refractory patients with HER2-positive metastatic colorectal cancer. FUNDING Associazione Italiana Ricerca Cancro (AIRC), Fondazione Oncologia Niguarda Onlus, and Roche.


Science Translational Medicine | 2014

Blockade of EGFR and MEK Intercepts Heterogeneous Mechanisms of Acquired Resistance to Anti-EGFR Therapies in Colorectal Cancer

Sandra Misale; Sabrina Arena; Simona Lamba; Giulia Siravegna; Alice Lallo; Sebastijan Hobor; Mariangela Russo; Michela Buscarino; Luca Lazzari; Andrea Sartore-Bianchi; Katia Bencardino; Alessio Amatu; Calogero Lauricella; Emanuele Valtorta; Salvatore Siena; Federica Di Nicolantonio; Alberto Bardelli

Colorectal cancers that become resistant to EGFR inhibitors through a variety of mechanisms can be effectively treated by inhibiting MEK in conjunction with EGFR. Circulating Tumor DNA for Early Detection and Managing Resistance Cancer evolves over time, without any warning signs. Similarly, the development of resistance to therapy generally becomes apparent only when there are obvious signs of tumor growth, at which point the patient may have lost valuable time. Although a repeat biopsy may be able to identify drug-resistant mutations before the tumor has a chance to regrow, it is usually not feasible to do many repeat biopsies. Now, two studies are demonstrating the utility of monitoring the patients’ blood for tumor DNA to detect cancer at the earliest stages of growth or resistance. In one study, Bettegowda and coauthors showed that sampling a patient’s blood may be sufficient to yield information about the tumor’s genetic makeup, even for many early-stage cancers, without a need for an invasive procedure to collect tumor tissue, such as surgery or endoscopy. The authors demonstrated the presence of circulating DNA from many types of tumors that had not yet metastasized or released detectable cells into the circulation. They could detect more than 50% of patients across 14 tumor types at the earliest stages, when these cancers may still be curable, suggesting that a blood draw could be a viable screening approach to detecting most cancers. They also showed that in patients with colorectal cancer, the information derived from circulating tumor DNA could be used to determine the optimal course of treatment and identify resistance to epidermal growth factor receptor (EGFR) blockade. Meanwhile, Misale and colleagues illustrated a way to use this information to overcome treatment resistance. These authors also found that mutations associated with EGFR inhibitor resistance could be detected in the blood of patients with colorectal cancer. In addition, they demonstrated that adding MEK inhibitors, another class of anticancer drugs, can successfully overcome resistance when given in conjunction with the EGFR inhibitors. Thus, the studies from Bettegowda and Misale and their colleagues show the effectiveness of analyzing circulating DNA from a variety of tumors and highlight the potential applications of this technology for early detection, monitoring resistance, and devising treatment plans to overcome resistance. Colorectal cancers (CRCs) that are sensitive to the anti–epidermal growth factor receptor (EGFR) antibodies cetuximab or panitumumab almost always develop resistance within several months of initiating therapy. We report the emergence of polyclonal KRAS, NRAS, and BRAF mutations in CRC cells with acquired resistance to EGFR blockade. Regardless of the genetic alterations, resistant cells consistently displayed mitogen-activated protein kinase kinase (MEK) and extracellular signal–regulated kinase (ERK) activation, which persisted after EGFR blockade. Inhibition of MEK1/2 alone failed to impair the growth of resistant cells in vitro and in vivo. An RNA interference screen demonstrated that suppression of EGFR, together with silencing of MEK1/2, was required to hamper the proliferation of resistant cells. Indeed, concomitant pharmacological blockade of MEK and EGFR induced prolonged ERK inhibition and severely impaired the growth of resistant tumor cells. Heterogeneous and concomitant mutations in KRAS and NRAS were also detected in plasma samples from patients who developed resistance to anti-EGFR antibodies. A mouse xenotransplant from a CRC patient who responded and subsequently relapsed upon EGFR therapy showed exquisite sensitivity to combinatorial treatment with MEK and EGFR inhibitors. Collectively, these results identify genetically distinct mechanisms that mediate secondary resistance to anti-EGFR therapies, all of which reactivate ERK signaling. These observations provide a rational strategy to overcome the multifaceted clonal heterogeneity that emerges when tumors are treated with targeted agents. We propose that MEK inhibitors, in combination with cetuximab or panitumumab, should be tested in CRC patients who become refractory to anti-EGFR therapies.


Cancer Discovery | 2016

Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer

Mariangela Russo; Giulia Siravegna; Lawrence S. Blaszkowsky; Giorgio Corti; Giovanni Crisafulli; Leanne G. Ahronian; Benedetta Mussolin; Eunice L. Kwak; Michela Buscarino; Luca Lazzari; Emanuele Valtorta; Mauro Truini; Nicholas A. Jessop; Hayley Robinson; Theodore S. Hong; Mari Mino-Kenudson; Federica Di Nicolantonio; Ashraf Thabet; Andrea Sartore-Bianchi; Salvatore Siena; A. John Iafrate; Alberto Bardelli; Ryan B. Corcoran

UNLABELLED How genomic heterogeneity associated with acquired resistance to targeted agents affects response to subsequent therapy is unknown. We studied EGFR blockade in colorectal cancer to assess whether tissue and liquid biopsies can be integrated with radiologic imaging to monitor the impact of individual oncogenic alterations on lesion-specific responses. Biopsy of a patients progressing liver metastasis following prolonged response to cetuximab revealed a MEK1(K57T) mutation as a novel mechanism of acquired resistance. This lesion regressed upon treatment with panitumumab and the MEK inhibitor trametinib. In circulating tumor DNA (ctDNA), mutant MEK1 levels declined with treatment, but a previously unrecognized KRAS(Q61H) mutation was also identified that increased despite therapy. This same KRAS mutation was later found in a separate nonresponding metastasis. In summary, parallel analyses of tumor biopsies and serial ctDNA monitoring show that lesion-specific radiographic responses to subsequent targeted therapies can be driven by distinct resistance mechanisms arising within separate tumor lesions in the same patient. SIGNIFICANCE Molecular heterogeneity ensuing from acquired resistance drives lesion-specific responses to subsequent targeted therapies. Analysis of a single-lesion biopsy is inadequate to guide selection of subsequent targeted therapies. ctDNA profiles allow the detection of concomitant resistance mechanisms residing in separate metastases and assessment of the effect of therapies designed to overcome resistance.


Clinical Cancer Research | 2015

Emergence of Multiple EGFR Extracellular Mutations during Cetuximab Treatment in Colorectal Cancer

Sabrina Arena; Beatriz Bellosillo; Giulia Siravegna; Alejandro Martinez; Israel Cañadas; Luca Lazzari; Noelia Ferruz; Mariangela Russo; Sandra Misale; Iria González; Mar Iglesias; Elena Gavilan; Giorgio Corti; Sebastijan Hobor; Giovanni Crisafulli; Marta Salido; Juan Sánchez; Alba Dalmases; Joaquim Bellmunt; Gianni De Fabritiis; Ana Rovira; Federica Di Nicolantonio; Joan Albanell; Alberto Bardelli; Clara Montagut

Purpose: Patients with colorectal cancer who respond to the anti-EGFR antibody cetuximab often develop resistance within several months of initiating therapy. To design new lines of treatment, the molecular landscape of resistant tumors must be ascertained. We investigated the role of mutations in the EGFR signaling axis on the acquisition of resistance to cetuximab in patients and cellular models. Experimental Design: Tissue samples were obtained from 37 patients with colorectal cancer who became refractory to cetuximab. Colorectal cancer cells sensitive to cetuximab were treated until resistant derivatives emerged. Mutational profiling of biopsies and cell lines was performed. Structural modeling and functional analyses were performed to causally associate the alleles to resistance. Results: The genetic profile of tumor specimens obtained after cetuximab treatment revealed the emergence of a complex pattern of mutations in EGFR, KRAS, NRAS, BRAF, and PIK3CA genes, including two novel EGFR ectodomain mutations (R451C and K467T). Mutational profiling of cetuximab-resistant cells recapitulated the molecular landscape observed in clinical samples and revealed three additional EGFR alleles: S464L, G465R, and I491M. Structurally, these mutations are located in the cetuximab-binding region, except for the R451C mutant. Functionally, EGFR ectodomain mutations prevent binding to cetuximab but a subset is permissive for interaction with panitumumab. Conclusions: Colorectal tumors evade EGFR blockade by constitutive activation of downstream signaling effectors and through mutations affecting receptor–antibody binding. Both mechanisms of resistance may occur concomitantly. Our data have implications for designing additional lines of therapy for patients with colorectal cancer who relapse upon treatment with anti-EGFR antibodies. Clin Cancer Res; 21(9); 2157–66. ©2015 AACR.


Cancer Discovery | 2016

Acquired Resistance to the TRK Inhibitor Entrectinib in Colorectal Cancer

Mariangela Russo; Sandra Misale; Ge Wei; Giulia Siravegna; Giovanni Crisafulli; Luca Lazzari; Giorgio Corti; Giuseppe Rospo; Luca Novara; Benedetta Mussolin; Alice Bartolini; Nicholas Cam; Roopal Patel; Shunqi Yan; Robert Shoemaker; Robert Wild; Federica Di Nicolantonio; Andrea Sartore-Bianchi; Gang Li; Salvatore Siena; Alberto Bardelli

UNLABELLED Entrectinib is a first-in-class pan-TRK kinase inhibitor currently undergoing clinical testing in colorectal cancer and other tumor types. A patient with metastatic colorectal cancer harboring an LMNA-NTRK1 rearrangement displayed a remarkable response to treatment with entrectinib, which was followed by the emergence of resistance. To characterize the molecular bases of the patients relapse, circulating tumor DNA (ctDNA) was collected longitudinally during treatment, and a tissue biopsy, obtained before entrectinib treatment, was transplanted in mice (xenopatient), which then received the same entrectinib regimen until resistance developed. Genetic profiling of ctDNA and xenopatient samples showed acquisition of two point mutations in the catalytic domain of NTRK1, p.G595R and p.G667C. Biochemical and pharmacologic analysis in multiple preclinical models confirmed that either mutation renders the TRKA kinase insensitive to entrectinib. These findings can be immediately exploited to design next-generation TRKA inhibitors. SIGNIFICANCE We provide proof of principle that analyses of xenopatients (avatar) and liquid biopsies allow the identification of drug resistance mechanisms in parallel with clinical treatment of an individual patient. We describe for the first time that p.G595R and p.G667C TRKA mutations drive acquired resistance to entrectinib in colorectal cancers carrying NTRK1 rearrangements.

Collaboration


Dive into the Giulia Siravegna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvatore Siena

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Marsoni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge