Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice Conigliaro is active.

Publication


Featured researches published by Alice Conigliaro.


Molecular Cancer | 2015

CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA

Alice Conigliaro; Viviana Costa; Alessia Lo Dico; Laura Saieva; Simona Buccheri; Francesco Dieli; Mauro Manno; Samuele Raccosta; Carmine Mancone; Marco Tripodi; Giacomo De Leo; Riccardo Alessandro

BackgroundCD90+ liver cancer cells have been described as cancer stem-cell-like (CSC), displaying aggressive and metastatic phenotype. Using two different in vitro models, already described as CD90+ liver cancer stem cells, our aim was to study their interaction with endothelial cells mediated by the release of exosomes.MethodsExosomes were isolated and characterized from both liver CD90+ cells and hepatoma cell lines. Endothelial cells were treated with exosomes, as well as transfected with a plasmid containing the full length sequence of the long non-coding RNA (lncRNA) H19. Molecular and functional analyses were done to characterize the endothelial phenotype after treatments.ResultsExosomes released by CD90+ cancer cells, but not by parental hepatoma cells, modulated endothelial cells, promoting angiogenic phenotype and cell-to-cell adhesion. LncRNA profiling revealed that CD90+ cells were enriched in lncRNA H19, and released this through exosomes. Experiments of gain and loss of function of H19 showed that this LncRNA plays an important role in the exosome-mediated phenotype of endothelial cells.ConclusionsOur data indicate a new exosome-mediated mechanism by which CSC-like CD90+ cells could influence their tumor microenvironment by promoting angiogenesis. Moreover, we suggest the lncRNA H19 as a putative therapeutic target in hepatocellular carcinoma.


Hepatology | 2011

The stable repression of mesenchymal program is required for hepatocyte identity: A novel role for hepatocyte nuclear factor 4α

Laura Santangelo; Alessandra Marchetti; Carla Cicchini; Alice Conigliaro; Beatrice Conti; Carmine Mancone; Jessica A. Bonzo; Frank J. Gonzalez; Tonino Alonzi; Laura Amicone; Marco Tripodi

The concept that cellular terminal differentiation is stably maintained once development is complete has been questioned by numerous observations showing that differentiated epithelium may undergo an epithelial‐to‐mesenchymal transition (EMT) program. EMT and the reverse process, mesenchymal‐to‐epithelial transition (MET), are typical events of development, tissue repair, and tumor progression. In this study, we aimed to clarify the molecular mechanisms underlying these phenotypic conversions in hepatocytes. Hepatocyte nuclear factor 4α (HNF4α) was overexpressed in different hepatocyte cell lines and the resulting gene expression profile was determined by real‐time quantitative polymerase chain reaction. HNF4α recruitment on promoters of both mesenchymal and EMT regulator genes was determined by way of electrophoretic mobility shift assay and chromatin immunoprecipitation. The effect of HNF4α depletion was assessed in silenced cells and in the context of the whole liver of HNF4 knockout animals. Our results identified key EMT regulators and mesenchymal genes as new targets of HNF4α. HNF4α, in cooperation with its target HNF1α, directly inhibits transcription of the EMT master regulatory genes Snail, Slug, and HMGA2 and of several mesenchymal markers. HNF4α‐mediated repression of EMT genes induces MET in hepatomas, and its silencing triggers the mesenchymal program in differentiated hepatocytes both in cell culture and in the whole liver. Conclusion: The pivotal role of HNF4α in the induction and maintenance of hepatocyte differentiation should also be ascribed to its capacity to continuously repress the mesenchymal program; thus, both HNF4α activator and repressor functions are necessary for the identity of hepatocytes. (HEPATOLOGY 2011;)


PLOS ONE | 2012

Human Haemato-Endothelial Precursors: Cord Blood CD34+ Cells Produce Haemogenic Endothelium

Elvira Pelosi; Germana Castelli; Ines Martin-Padura; Veronica Bordoni; Simona Santoro; Alice Conigliaro; Anna Maria Cerio; Marco De Santis Puzzonia; Paola Marighetti; Mauro Biffoni; Tonino Alonzi; Laura Amicone; Myriam Alcalay; Francesco Bertolini; Ugo Testa; Marco Tripodi

Embryologic and genetic evidence suggest a common origin of haematopoietic and endothelial lineages. In the murine embryo, recent studies indicate the presence of haemogenic endothelium and of a common haemato-endothelial precursor, the haemangioblast. Conversely, so far, little evidence supports the presence of haemogenic endothelium and haemangioblasts in later stages of development. Our studies indicate that human cord blood haematopoietic progenitors (CD34+45+144−), triggered by murine hepatocyte conditioned medium, differentiate into adherent proliferating endothelial precursors (CD144+CD105+CD146+CD31+CD45−) capable of functioning as haemogenic endothelium. These cells, proven to give rise to functional vasculature in vivo, if further instructed by haematopoietic growth factors, first switch to transitional CD144+45+ cells and then to haematopoietic cells. These results highlight the plasticity of haemato-endhothelial precursors in human post-natal life. Furthermore, these studies may provide highly enriched populations of human post-fetal haemogenic endothelium, paving the way for innovative projects at a basic and possibly clinical level.


PLOS ONE | 2016

Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

Andrea Baiocchini; Claudia Montaldo; Alice Conigliaro; Alessio Grimaldi; Virginia Correani; Francesco Mura; Fabiola Ciccosanti; Nicolina Rotiroti; Alessia Brenna; Marzia Montalbano; Gianpiero D’Offizi; Maria Rosaria Capobianchi; Riccardo Alessandro; Mauro Piacentini; Maria Eugenia Schininà; Bruno Maras; Franca Del Nonno; Marco Tripodi; Carmine Mancone

Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies.


Cell Death & Differentiation | 2012

An epistatic mini-circuitry between the transcription factors Snail and HNF4α controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs.

F. Garibaldi; Carla Cicchini; Alice Conigliaro; Laura Santangelo; Angela Maria Cozzolino; Germana Grassi; Alessandra Marchetti; Marco Tripodi; Laura Amicone

Preservation of the epithelial state involves the stable repression of epithelial-to-mesenchymal transition program, whereas maintenance of the stem compartment requires the inhibition of differentiation processes. A simple and direct molecular mini-circuitry between master elements of these biological processes might provide the best device to keep balanced such complex phenomena. In this work, we show that in hepatic stem cell Snail, a transcriptional repressor of the hepatocyte differentiation master gene HNF4α, directly represses the expression of the epithelial microRNAs (miRs)-200c and -34a, which in turn target several stem cell genes. Notably, in differentiated hepatocytes HNF4α, previously identified as a transcriptional repressor of Snail, induces the miRs-34a and -200a, b, c that, when silenced, causes epithelial dedifferentiation and reacquisition of stem traits. Altogether these data unveiled Snail, HNF4α and miRs-200a, b, c and -34a as epistatic elements controlling hepatic stem cell maintenance/differentiation.


Cell Death & Differentiation | 2008

Isolation and characterization of a murine resident liver stem cell

Alice Conigliaro; M. Colletti; Carla Cicchini; M. T. Guerra; Rossella Manfredini; Roberta Zini; V. Bordoni; F. Siepi; M. Leopizzi; Marco Tripodi; Laura Amicone

Increasing evidence provides support that mammalian liver contains stem/progenitor cells, but their molecular phenotype, embryological derivation, biology and their role in liver cell turnover and regeneration remain to be further clarified. In this study, we report the isolation, characterization and reproducible establishment in line of a resident liver stem cell (RLSC) with immunophenotype and differentiative potentiality distinct from other previously described liver precursor/stem cells. RLSCs, derived from fetal and neonatal murine livers as well as from immortalized hepatocytic MMH lines and established in lines, are Sca+, CD34−, CD45−, α-fetoprotein+ and albumin−. This molecular phenotype suggests a non-hematopoietic origin. RLSC transcriptional profile, defined by microArray technology, highlighted the expression of a broad spectrum of ‘plasticity-related genes’ and ‘developmental genes’ suggesting a multi-differentiative potentiality. Indeed, RLSCs spontaneously differentiate into hepatocytes and cholangiocytes and, when cultured in appropriate conditions, into mesenchymal and neuro-ectodermal cell lineages such as osteoblasts/osteocytes, chondrocytes, astrocytes and neural cells. RLSC capability to spontaneously differentiate into hepatocytes, the lack of albumin expression and the broad differentiative potentiality locate them in a pre-hepatoblast/liver precursor cells hierarchical position. In conclusion, RLSCs may provide a useful tool to improve liver stem cell knowledge and to assess new therapeutic approaches for liver diseases.


Cell Death & Differentiation | 2013

Evidence for a common progenitor of epithelial and mesenchymal components of the liver

Alice Conigliaro; Laura Amicone; Viviana Costa; M De Santis Puzzonia; Carmine Mancone; Benedetto Sacchetti; Carla Cicchini; F. Garibaldi; D A Brenner; T Kisseleva; P Bianco; Marco Tripodi

Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. the liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the liver fibrosis) in adult organ is yet unveiled. We show here that epithelial and mesenchymal liver cells (hepatocytes and HSCs) may arise from a common progenitor. Sca+ murine progenitor cells were found to coexpress markers of epithelial and mesenchymal lineages and to give rise, within few generations, to cells that segregate the lineage-specific markers into two distinct subpopulations. Notably, these progenitor cells, clonally derived, when transplanted in healthy livers, were found to generate epithelial and mesenchymal liver-specific derivatives (i.e. hepatocytes and HSCs) properly integrated in the liver architecture. These evidences suggest the existence of a ‘bona fide’ organ-specific meso-endodermal precursor cell, thus profoundly modifying current models of adult progenitor commitment believed, so far, to be lineage-restricted. Heterotopic transplantations, which confirm the dual differentiation potentiality of those cells, indicates as tissue local cues are necessary to drive a full hepatic differentiation. These data provide first evidences for an adult stem/precursor cell capable to differentiate in both parenchymal and non-parenchymal organ-specific components and candidate the liver as the instructive site for the reservoir compartment of HSC precursors as yet non-localized in the adult.


Oncotarget | 2017

MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells

Viviana Costa; Alessia Lo Dico; A. Rizzo; Francesca Rajata; Marco Tripodi; Riccardo Alessandro; Alice Conigliaro

The survival rates in colon cancer patients are inversely proportional to the number of lymph node metastases. The hypoxia-induced Epithelial to Mesenchymal Transition (EMT), driven by HIF1α, is known to be involved in cancer progression and metastasis. Recently, we have reported that miR-675-5p promotes glioma growth by stabilizing HIF1α; here, by use of the syngeneic cell lines we investigated the role of the miR-675-5p in colon cancer metastasis. Our results show that miR-675-5p, over expressed in metastatic colon cancer cells, participates to tumour progression by regulating HIF1α induced EMT. MiR-675-5p increases Snail transcription by a dual strategy: i) stabilizing the activity of the transcription factor HIF1α and ii) and inhibiting Snails repressor DDB2 (Damage specific DNA Binding protein 2). Moreover, transcriptional analyses on specimens from colon cancer patients confirmed, in vivo, the correlation between miR-675-5p over-expression and metastasis, thus identifying miR-675-5p as a new marker for colon cancer progression and therefore a putative target for therapeutic strategies.


Theranostics | 2016

MiR675-5p Acts on HIF-1α to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma.

Alessia Lo Dico; Viviana Costa; Cristina Martelli; Cecilia Diceglie; Francesca Rajata; A. Rizzo; Carmine Mancone; Marco Tripodi; Luisa Ottobrini; Riccardo Alessandro; Alice Conigliaro

Hypoxia is a common feature in solid tumours. In glioma, it is considered the major driving force for tumour angiogenesis and correlates with enhanced resistance to conventional therapies, increased invasiveness and a poor prognosis for patients. Here we describe, for the first time, that miR675-5p, embedded in hypoxia-induced long non-coding RNA H19, plays a mandatory role in establishing a hypoxic response and in promoting hypoxia-mediated angiogenesis. We demonstrated, in vitro and in vivo, that miR675-5p over expression in normoxia is sufficient to induce a hypoxic moreover, miR675-5p depletion in low oxygen conditions, drastically abolishes hypoxic responses including angiogenesis. In addition, our data indicate an interaction of miR675-5p, HIF-1α mRNA and the RNA Binding Protein HuR in hypoxia-induced responses. We suggest the modulation of miR675-5p as a new therapeutic option to promote or abolish hypoxia induced angiogenesis.


Proteomics | 2014

Spike-in SILAC proteomic approach reveals the vitronectin as an early molecular signature of liver fibrosis in hepatitis C infections with hepatic iron overload

Claudia Montaldo; Simone Mattei; Andrea Baiocchini; Nicolina Rotiroti; Franca Del Nonno; Leopoldo Paolo Pucillo; Angela Maria Cozzolino; Cecilia Battistelli; Laura Amicone; Giuseppe Ippolito; Vera van Noort; Alice Conigliaro; Tonino Alonzi; Marco Tripodi; Carmine Mancone

Hepatitis C virus (HCV)‐induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal‐restricted histological distribution of pathological iron deposits has hampered the attempt to perform large‐scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload‐induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike‐in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron‐associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV‐infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV‐infected patients without iron overload.

Collaboration


Dive into the Alice Conigliaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmine Mancone

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Santangelo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Montaldo

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge