Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alice Giustacchini is active.

Publication


Featured researches published by Alice Giustacchini.


Nature Methods | 2009

Stable knockdown of microRNA in vivo by lentiviral vectors

Bernhard Gentner; Giulia Schira; Alice Giustacchini; Mario Amendola; Brian D. Brown; Maurilio Ponzoni; Luigi Naldini

Studying microRNA function in vivo requires genetic strategies to generate loss-of-function phenotypes. We used lentiviral vectors to stably and specifically knock down microRNA by overexpressing microRNA target sequences from polymerase II promoters. These vectors effectively inhibited regulation of reporter constructs and natural microRNA targets. We used bone marrow reconstitution with hematopoietic stem cells stably overexpressing miR-223 target sequence to phenocopy the genetic miR-223 knockout mouse, indicating robust interference of microRNA function in vivo.


Science Translational Medicine | 2010

Identification of Hematopoietic Stem Cell–Specific miRNAs Enables Gene Therapy of Globoid Cell Leukodystrophy

Bernhard Gentner; Ilaria Visigalli; Hidefumi Hiramatsu; Eric R. Lechman; Silvia Ungari; Alice Giustacchini; Giulia Schira; Mario Amendola; Angelo Quattrini; Sabata Martino; Aldo Orlacchio; John E. Dick; Alessandra Biffi; Luigi Naldini

Hematopoietic stem cell–specific microRNAs allow regulation of therapeutic transgene expression and enable effective gene therapy of globoid cell leukodystrophy. Scratching the Surface of the Holy Grail In Monty Python and the Holy Grail, when King Arthur cuts off one of the arms of the Black Knight, he claims it is only a scratch. Similarly, gene therapy—the insertion of genes into cells to reverse a condition or repair a biological process—has been heralded as a Holy Grail for the treatment of genetic diseases for nearly 40 years. Yet, the complications of gene therapy, including immune responses to the viral vector and cancers that result from insertional mutagenesis, are more comparable to a severed arm than a surface wound. However, researchers with the resiliency of the Black Knight have presided over recent successes, most notably in metastatic melanoma and immune cells, and have reignited the quest for gene therapy solutions to otherwise untreatable diseases. Gentner et al. build on these successes by identifying new microRNAs that can restrict gene therapy vectors to particular immune cell types and thus be used to safely treat globoid cell leukodystrophy (also known as Krabbe disease). Globoid cell leukodystrophy is a rare metabolic disorder caused by a mutation in a lysosomal enzyme called galactocerebrosidase (GALC). In patients who carry the mutation in both copies of the GALC gene, unmetabolized lipids accumulate in myelin-secreting glial cells, rendering them unable to produce the myelin sheath that normally wraps and protects nerves. This aberration results in severe and often fatal degeneration of motor skills. Bone marrow transplantation has been shown to benefit these patients if the disease is caught early enough. Genetic manipulation of the hematopoietic stem and progenitor cells (HSPCs) found in bone marrow may improve this therapy; however, high-level GALC expression in HSPCs, but not in more differentiated immune cells, is toxic. To address this issue, Gentner et al. identified miRNAs—short RNA sequences that often silence gene expression—that were specifically expressed in HSPCs but not in more differentiated cells. They then used these miRNAs in a GALC/HSPC gene therapy system to suppress GALC function in HSPCs upon transfer into a mouse model of globoid cell leukodystrophy. As these cells matured, amounts of HSPC-specific miRNA decreased and GALC expression increased. This approach protected the HSPCs from GALC toxicity, but allowed for successful gene therapy of the disease. In addition, these hematopoietic stem cell–specific miRNAs could be used as simple markers with which to isolate HSPCs for study and transplantation. This work thus provides a basis for improvements in HSPC-mediated gene therapy and may offer globoid cell leukodystrophy patients a new therapeutic option that resembles a scratch more than a chop. Globoid cell leukodystrophy (GLD; also known as Krabbe disease) is an invariably fatal lysosomal storage disorder caused by mutations in the galactocerebrosidase (GALC) gene. Hematopoietic stem cell (HSC)–based gene therapy is being explored for GLD; however, we found that forced GALC expression was toxic to HSCs and early progenitors, highlighting the need for improved regulation of vector expression. We used a genetic reporter strategy based on lentiviral vectors to detect microRNA activity in hematopoietic cells at single-cell resolution. We report that miR-126 and miR-130a were expressed in HSCs and early progenitors from both mice and humans, but not in differentiated progeny. Moreover, repopulating HSCs could be purified solely on the basis of miRNA expression, providing a new method relevant for human HSC isolation. By incorporating miR-126 target sequences into a GALC-expressing vector, we suppressed GALC expression in HSCs while maintaining robust expression in mature hematopoietic cells. This approach protected HSCs from GALC toxicity and allowed successful treatment of a mouse GLD model, providing a rationale to explore HSC-based gene therapy for GLD.


Cancer Cell | 2014

Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells In Vivo.

Petter S. Woll; Una Kjällquist; Onima Chowdhury; Helen Doolittle; David C. Wedge; Supat Thongjuea; Mtakai Ngara; Kristina Anderson; Qiaolin Deng; Adam Mead; L Stenson; Alice Giustacchini; Eleni Giannoulatou; Stephen Taylor; Mohsen Karimi; Christian Scharenberg; Teresa Mortera-Blanco; Iain C Macaulay; Sally Ann Clark; Ingunn Dybedal; Dag Josefsen; Pierre Fenaux; Peter Hokland; Mette Holm; Mario Cazzola; Luca Malcovati; Sudhir Tauro; David G. Bowen; Jacqueline Boultwood; Andrea Pellagatti

Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.


Cell Stem Cell | 2012

Attenuation of miR-126 Activity Expands HSC In Vivo without Exhaustion

Eric R. Lechman; Bernhard Gentner; Alice Giustacchini; Massimo Saini; Francesco Boccalatte; Hidefumi Hiramatsu; Umberto Restuccia; Angela Bachi; Veronique Voisin; Gary D. Bader; John E. Dick; Luigi Naldini

Summary Lifelong blood cell production is governed through the poorly understood integration of cell-intrinsic and -extrinsic control of hematopoietic stem cell (HSC) quiescence and activation. MicroRNAs (miRNAs) coordinately regulate multiple targets within signaling networks, making them attractive candidate HSC regulators. We report that miR-126, a miRNA expressed in HSC and early progenitors, plays a pivotal role in restraining cell-cycle progression of HSC in vitro and in vivo. miR-126 knockdown by using lentiviral sponges increased HSC proliferation without inducing exhaustion, resulting in expansion of mouse and human long-term repopulating HSC. Conversely, enforced miR-126 expression impaired cell-cycle entry, leading to progressively reduced hematopoietic contribution. In HSC/early progenitors, miR-126 regulates multiple targets within the PI3K/AKT/GSK3β pathway, attenuating signal transduction in response to extrinsic signals. These data establish that miR-126 sets a threshold for HSC activation and thus governs HSC pool size, demonstrating the importance of miRNA in the control of HSC function.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Systemic and Targeted Delivery of Semaphorin 3A Inhibits Tumor Angiogenesis and Progression in Mouse Tumor Models

Andrea Casazza; Xi Fu; Irja Johansson; Lorena Capparuccia; Fredrik Andersson; Alice Giustacchini; Mario Leonardo Squadrito; Mary Anna Venneri; Massimiliano Mazzone; Erik G. Larsson; Peter Carmeliet; Michele De Palma; Luigi Naldini; Luca Tamagnone; Charlotte Rolny

Objective—The role of semaphorins in tumor progression is still poorly understood. In this study, we aimed at elucidating the regulatory role of semaphorin 3A (SEMA3A) in primary tumor growth and metastatic dissemination. Methods and Results—We used 3 different experimental approaches in mouse tumor models: (1) overexpression of SEMA3A in tumor cells, (2) systemic expression of SEMA3A following liver gene transfer in mice, and (3) tumor-targeted release of SEMA3A using gene modified Tie2-expressing monocytes as delivery vehicles. In each of these experimental settings, SEMA3A efficiently inhibited tumor growth by inhibiting vessel function and increasing tumor hypoxia and necrosis, without promoting metastasis. We further show that the expression of the receptor neuropilin-1 in tumor cells is required for SEMA3A-dependent inhibition of tumor cell migration in vitro and metastatic spreading in vivo. Conclusion—In sum, both systemic and tumor-targeted delivery of SEMA3A inhibits tumor angiogenesis and tumor growth in multiple mouse models; moreover, SEMA3A inhibits the metastatic spreading from primary tumors. These data support the rationale for further investigation of SEMA3A as an anticancer molecule.


Nature Immunology | 2016

Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing

Roy Drissen; Natalija Buza-Vidas; Petter S. Woll; Supat Thongjuea; Adriana Gambardella; Alice Giustacchini; Elena Mancini; Alya Zriwil; Michael Lutteropp; Amit Grover; Adam Mead; Ewa Sitnicka; Sten Eirik W. Jacobsen; Claus Nerlov

According to current models of hematopoiesis, lymphoid-primed multi-potent progenitors (LMPPs) (Lin−Sca-1+c-Kit+CD34+Flt3hi) and common myeloid progenitors (CMPs) (Lin−Sca-1+c-Kit+CD34+CD41hi) establish an early branch point for separate lineage-commitment pathways from hematopoietic stem cells, with the notable exception that both pathways are proposed to generate all myeloid innate immune cell types through the same myeloid-restricted pre–granulocyte-macrophage progenitor (pre-GM) (Lin−Sca-1−c-Kit+CD41−FcγRII/III−CD150−CD105−). By single-cell transcriptome profiling of pre-GMs, we identified distinct myeloid differentiation pathways: a pathway expressing the gene encoding the transcription factor GATA-1 generated mast cells, eosinophils, megakaryocytes and erythroid cells, and a pathway lacking expression of that gene generated monocytes, neutrophils and lymphocytes. These results identify an early hematopoietic-lineage bifurcation that separates the myeloid lineages before their segregation from other hematopoietic-lineage potential.


Nature Communications | 2016

Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells

Amit Grover; Alejandra Sanjuan-Pla; Supat Thongjuea; Joana Carrelha; Alice Giustacchini; Adriana Gambardella; Iain C. Macaulay; Elena Mancini; Tiago C. Luis; Adam Mead; Sten Eirik W. Jacobsen; Claus Nerlov

Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis.


Nature Medicine | 2017

Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia

Alice Giustacchini; Supat Thongjuea; Nikolaos Barkas; Petter S. Woll; Benjamin Povinelli; C Booth; P. Sopp; Ruggiero Norfo; Alba Rodriguez-Meira; Neil Ashley; Lauren Jamieson; Paresh Vyas; Kristina Anderson; Åsa Segerstolpe; Hong Qian; Ulla Olsson-Strömberg; Satu Mustjoki; Rickard Sandberg; Sten Eirik W. Jacobsen; Adam Mead

Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.


Human Molecular Genetics | 2016

Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics

Adam E. Handel; S Chintawar; Tatjana Lalic; E Whiteley; Jane Vowles; Alice Giustacchini; K Argoud; P. Sopp; Mahito Nakanishi; Rory Bowden; Sally A. Cowley; Sarah E. Newey; Colin J. Akerman; Chris P. Ponting; M Z Cader

Induced pluripotent stem cell (iPSC)-derived cortical neurons potentially present a powerful new model to understand corticogenesis and neurological disease. Previous work has established that differentiation protocols can produce cortical neurons, but little has been done to characterize these at cellular resolution. In particular, it is unclear to what extent in vitro two-dimensional, relatively disordered culture conditions recapitulate the development of in vivo cortical layer identity. Single-cell multiplex reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to interrogate the expression of genes previously implicated in cortical layer or phenotypic identity in individual cells. Totally, 93.6% of single cells derived from iPSCs expressed genes indicative of neuronal identity. High proportions of single neurons derived from iPSCs expressed glutamatergic receptors and synaptic genes. And, 68.4% of iPSC-derived neurons expressing at least one layer marker could be assigned to a laminar identity using canonical cortical layer marker genes. We compared single-cell RNA-seq of our iPSC-derived neurons to available single-cell RNA-seq data from human fetal and adult brain and found that iPSC-derived cortical neurons closely resembled primary fetal brain cells. Unexpectedly, a subpopulation of iPSC-derived neurons co-expressed canonical fetal deep and upper cortical layer markers. However, this appeared to be concordant with data from primary cells. Our results therefore provide reassurance that iPSC-derived cortical neurons are highly similar to primary cortical neurons at the level of single cells but suggest that current layer markers, although effective, may not be able to disambiguate cortical layer identity in all cells.


Cancer Cell | 2016

miRNA-126 Orchestrates an Oncogenic Program in B Cell Precursor Acute Lymphoblastic Leukemia

Silvia Nucera; Alice Giustacchini; Francesco Boccalatte; Andrea Calabria; Cristiana Fanciullo; Tiziana Plati; Anna Ranghetti; Jose Manuel Garcia-Manteiga; Davide Cittaro; Fabrizio Benedicenti; Eric R. Lechman; John E. Dick; Maurilio Ponzoni; Fabio Ciceri; Eugenio Montini; Bernhard Gentner; Luigi Naldini

MicroRNA (miRNA)-126 is a known regulator of hematopoietic stem cell quiescence. We engineered murine hematopoiesis to express miRNA-126 across all differentiation stages. Thirty percent of mice developed monoclonal B cell leukemia, which was prevented or regressed when a tetracycline-repressible miRNA-126 cassette was switched off. Regression was accompanied by upregulation of cell-cycle regulators and B cell differentiation genes, and downregulation of oncogenic signaling pathways. Expression of dominant-negative p53 delayed blast clearance upon miRNA-126 switch-off, highlighting the relevance of p53 inhibition in miRNA-126 addiction. Forced miRNA-126 expression in mouse and human progenitors reduced p53 transcriptional activity through regulation of multiple p53-related targets. miRNA-126 is highly expressed in a subset of human B-ALL, and antagonizing miRNA-126 in ALL xenograft models triggered apoptosis and reduced disease burden.

Collaboration


Dive into the Alice Giustacchini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sten Eirik W. Jacobsen

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi Naldini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Gentner

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric R. Lechman

Princess Margaret Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge