Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petter S. Woll is active.

Publication


Featured researches published by Petter S. Woll.


Cancer Cell | 2011

Coexistence of LMPP-like and GMP-like Leukemia Stem Cells in Acute Myeloid Leukemia

Nicolas Goardon; Emanuele Marchi; Ann Atzberger; Lynn Quek; Anna Schuh; Shamit Soneji; Petter S. Woll; Adam Mead; Kate A. Alford; Raj Rout; Salma Chaudhury; Amanda F. Gilkes; Steven Knapper; Kheira Beldjord; Suriya Begum; Susan Rose; Nicola Geddes; Mike Griffiths; Graham R. Standen; Alexander Sternberg; Jamie Cavenagh; Hannah Hunter; David G. Bowen; Sally Killick; L. G. Robinson; A J Price; Elizabeth Macintyre; Paul Virgo; Alan Kenneth Burnett; Charles Craddock

The relationships between normal and leukemic stem/progenitor cells are unclear. We show that in ∼80% of primary human CD34+ acute myeloid leukemia (AML), two expanded populations with hemopoietic progenitor immunophenotype coexist in most patients. Both populations have leukemic stem cell (LSC) activity and are hierarchically ordered; one LSC population gives rise to the other. Global gene expression profiling shows the LSC populations are molecularly distinct and resemble normal progenitors but not stem cells. The more mature LSC population most closely mirrors normal granulocyte-macrophage progenitors (GMP) and the immature LSC population a previously uncharacterized progenitor functionally similar to lymphoid-primed multipotential progenitors (LMPPs). This suggests that in most cases primary CD34+ AML is a progenitor disease where LSCs acquire abnormal self-renewal potential.


The New England Journal of Medicine | 2010

Persistent malignant stem cells in del(5q) myelodysplasia in remission.

Ramin Tehranchi; Petter S. Woll; Kristina Anderson; Natalija Buza-Vidas; Takuo Mizukami; Adam Mead; Ingbritt Åstrand-Grundström; Bodil Strömbeck; Andrea Horvat; Helen Ferry; Rakesh Singh Dhanda; Robert Hast; Tobias Rydén; Paresh Vyas; Gudrun Göhring; Brigitte Schlegelberger; Bertil Johansson; Eva Hellström-Lindberg; Alan F. List; Lars J Nilsson; Sten Eirik W. Jacobsen

BACKGROUND The in vivo clinical significance of malignant stem cells remains unclear. METHODS Patients who have the 5q deletion (del[5q]) myelodysplastic syndrome (interstitial deletions involving the long arm of chromosome 5) have complete clinical and cytogenetic remissions in response to lenalidomide treatment, but they often have relapse. To determine whether the persistence of rare but distinct malignant stem cells accounts for such relapses, we examined bone marrow specimens obtained from seven patients with the del(5q) myelodysplastic syndrome who became transfusion-independent while receiving lenalidomide treatment and entered cytogenetic remission. RESULTS Virtually all CD34+, CD38+ progenitor cells and stem cells that were positive for CD34 and CD90, with undetectable or low CD38 (CD38−/low), had the 5q deletion before treatment. Although lenalidomide efficiently reduced these progenitors in patients in complete remission, a larger fraction of the minor, quiescent, CD34+,CD38-/low, CD90+ del(5q) stem cells as well as functionally defined del(5q) stem cells remained distinctly resistant to lenalidomide. Over time, lenalidomide resistance developed in most of the patients in partial and complete remission, with recurrence or expansion of the del(5q) clone and clinical and cytogenetic progression. CONCLUSIONS In these patients with the del(5q) myelodysplastic syndrome, we identified rare and phenotypically distinct del(5q) myelodysplastic syndrome stem cells that were also selectively resistant to therapeutic targeting at the time of complete clinical and cytogenetic remission. (Funded by the EuroCancerStemCell Consortium and others.)


Nature | 2013

Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy

Alejandra Sanjuan-Pla; Iain C. Macaulay; Christina T. Jensen; Petter S. Woll; Tiago C. Luis; Adam Mead; Susan Hardman Moore; C Carella; S Matsuoka; T Bouriez Jones; Onima Chowdhury; L Stenson; Michael Lutteropp; Green Jca.; R Facchini; Hanane Boukarabila; Amit Grover; Adriana Gambardella; Supat Thongjuea; Joana Carrelha; P Tarrant; Debbie Atkinson; Clark S-A.; Claus Nerlov; Jacobsen Sew.

The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding—a common and life-threatening side effect of many cancer therapies—and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.


Stem Cells | 2006

Hematopoietic Engraftment of Human Embryonic Stem Cell- Derived Cells Is Regulated by Recipient Innate Immunity

Xinghui Tian; Petter S. Woll; Julie K. Morris; Jonathan L. Linehan; Dan S. Kaufman

Human embryonic stem cells (hESCs) provide an important means to characterize early stages of hematopoietic development. However, the in vivo potential of hESC‐derived hematopoietic cells has not been well defined. We demonstrate that hESC‐derived cells are capable of long‐term hematopoietic engraftment when transplanted into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Human CD45+ and CD34+ cells are identified in the mouse bone marrow (BM) more than 3 months after injection of hESCs that were allowed to differentiate on S17 stromal cells for 7–24 days. Secondary engraftment studies further confirm long‐term repopulating cells derived from hESCs. We also evaluated two mechanisms that may inhibit engraftment: host immunity and requirement for homing to BM. Treatment with anti‐ASGM1 antiserum that primarily acts by depletion of natural killer cells in transplanted mice leads to improved engraftment, likely due to low levels of HLA class I expressed on hESCs and CD34+ cells derived from hESCs. Intra‐BM injection also provided stable engraftment, with hematopoietic cells identified in both the injected and contra‐lateral femur. Importantly, no teratomas are evident in animals injected with differentiated hESCs. These results demonstrate that SCID‐repopulating cells, a close surrogate for hematopoietic stem cells, can be derived from hESCs. Moreover, both adaptive and innate immune effector cells may be barriers to engraftment of these cells.


Journal of Immunology | 2005

Human Embryonic Stem Cell-Derived NK Cells Acquire Functional Receptors and Cytolytic Activity

Petter S. Woll; Colin H. Martin; Jeffrey S. Miller; Dan S. Kaufman

Human embryonic stem cells (hESCs) provide a unique resource to analyze early stages of human hematopoiesis. However, little is known about the ability to use hESCs to evaluate lymphocyte development. In the present study, we use a two-step culture method to demonstrate efficient generation of functional NK cells from hESCs. The CD56+CD45+ hESC-derived lymphocytes express inhibitory and activating receptors typical of mature NK cells, including killer cell Ig-like receptors, natural cytotoxicity receptors, and CD16. Limiting dilution analysis suggests that these cells can be produced from hESC-derived hemopoietic progenitors at a clonal frequency similar to CD34+ cells isolated from cord blood. The hESC-derived NK cells acquire the ability to lyse human tumor cells by both direct cell-mediated cytotoxicity and Ab-dependent cellular cytotoxicity. Additionally, activated hESC-derived NK cells up-regulate cytokine production. hESC-derived lymphoid progenitors provide a novel means to characterize specific cellular and molecular mechanisms that lead to development of specific human lymphocyte populations. These cells may also provide a source for innovative cellular immune therapies.


Cancer Cell | 2014

Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells In Vivo.

Petter S. Woll; Una Kjällquist; Onima Chowdhury; Helen Doolittle; David C. Wedge; Supat Thongjuea; Mtakai Ngara; Kristina Anderson; Qiaolin Deng; Adam Mead; L Stenson; Alice Giustacchini; Eleni Giannoulatou; Stephen Taylor; Mohsen Karimi; Christian Scharenberg; Teresa Mortera-Blanco; Iain C Macaulay; Sally Ann Clark; Ingunn Dybedal; Dag Josefsen; Pierre Fenaux; Peter Hokland; Mette Holm; Mario Cazzola; Luca Malcovati; Sudhir Tauro; David G. Bowen; Jacqueline Boultwood; Andrea Pellagatti

Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.


Blood | 2009

Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity

Petter S. Woll; Bartosz Grzywacz; Xinghui Tian; Rebecca K. Marcus; David A. Knorr; Michael R. Verneris; Dan S. Kaufman

Natural killer (NK) cells serve as important effectors for antitumor immunity, and CD56+CD45+ NK cells can be routinely derived from human embryonic stem cells (hESCs). However, little is know about the ability of hESC-derived NK cells to mediate an effective in vivo antitumor response. Using bioluminescent imaging, we now demonstrate that H9 line hESC-derived NK cells mediate effective clearance of human tumor cells in vivo. In addition to increased in vitro killing of diverse tumor targets, the in vivo tumor clearance by H9 hESC-derived NK cells was more effective compared with NK cells derived from umbilical cord blood (UCB). Phenotypic analysis demonstrates the hESC-derived NK cells are uniformly CD94+CD117(low/-), an NK-cell population characterized by potent cytolytic activity and thus more competent to mediate tumor clearance. These studies demonstrate that hESCs provide an important model to study human lymphocyte development and may serve as a novel source for antitumor immunotherapy.


Stem Cells | 2007

Efficient and Stable Transgene Expression in Human Embryonic Stem Cells Using Transposon‐Mediated Gene Transfer

Andrew Wilber; Jonathan L. Linehan; Xinghui Tian; Petter S. Woll; Julie K. Morris; Lalitha R. Belur; R. Scott McIvor; Dan S. Kaufman

Efficient and stable genetic modification of human embryonic stem (ES) cells is required to realize the full scientific and potential therapeutic use of these cells. Currently, only limited success toward this goal has been achieved without using a viral vector. The Sleeping Beauty (SB) transposon system mediates nonviral gene insertion and stable expression in target cells and tissues. Here, we demonstrate use of the nonviral SB transposon system to effectively mediate stable gene transfer in human ES cells. Transposons encoding (a) green fluorescent protein coupled to the zeocin gene or (b) the firefly luciferase (luc) gene were effectively delivered to undifferentiated human ES cells with either a DNA or RNA source of transposase. Only human ES cells cotransfected with transposon‐ and transposase‐encoding sequences exhibited transgene expression after 1 week in culture. Molecular analysis of transposon integrants indicated that 98% of stable gene transfer resulted from transposition. Stable luc expression was observed up to 5 months in human ES cells cotransfected with a transposon along with either DNA or RNA encoding SB transposase. Genetically engineered human ES cells demonstrated the ability to differentiate into teratomas in vivo and mature hematopoietic cells in vitro while maintaining stable transgene expression. We conclude that the SB transposon system provides an effective approach with several advantages for genetic manipulation and durable gene expression in human ES cells.


Cell Stem Cell | 2013

Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells.

Charlotta Böiers; Joana Carrelha; Michael Lutteropp; Sidinh Luc; Joanna C.A. Green; Emanuele Azzoni; Petter S. Woll; Adam Mead; Anne Hultquist; Gemma Swiers; Elisa Gomez Perdiguero; Iain C Macaulay; Luca Melchiori; Tiago C. Luis; Shabnam Kharazi; Tiphaine Bouriez-Jones; Qiaolin Deng; Annica Pontén; Deborah Atkinson; Christina T. Jensen; Ewa Sitnicka; Frederic Geissmann; Isabelle Godin; Rickard Sandberg; Marella de Bruijn; Sten Eirik W. Jacobsen

In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.


Nature Immunology | 2012

The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential

Sidinh Luc; Tiago C. Luis; Hanane Boukarabila; Iain C Macaulay; Natalija Buza-Vidas; Tiphaine Bouriez-Jones; Michael Lutteropp; Petter S. Woll; Stephen Loughran; Adam Mead; Anne Hultquist; John Brown; Takuo Mizukami; S Matsuoka; Helen Ferry; Kristina Anderson; Deborah Atkinson; Shamit Soneji; Aniela Domanski; Alison Farley; Alejandra Sanjuan-Pla; Cintia Carella; Roger Patient; Marella de Bruijn; Tariq Enver; Claus Nerlov; C. Clare Blackburn; Isabelle Godin; Sten Eirik W. Jacobsen

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte–restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage–commitment process transits from the bone marrow to the remote thymus.

Collaboration


Dive into the Petter S. Woll's collaboration.

Top Co-Authors

Avatar

Sten Eirik W. Jacobsen

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus Nerlov

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge