Alice Giusti
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alice Giusti.
Journal of Agricultural and Food Chemistry | 2014
Andrea Armani; Alice Giusti; Lorenzo Castigliego; Aurelio Rossi; Lara Tinacci; Daniela Gianfaldoni; Alessandra Guidi
Salted jellyfish, a traditional food in Asian Countries, is nowadays spreading on the Western markets. In this work, we developed a Pentaplex PCR for the identification of five edible species (Nemopilema nomurai, Rhopilema esculentum, Rhizostoma pulmo, Pelagia noctiluca, and Cotylorhiza tuberculata), which cannot be identified by a mere visual inspection in jellyfish products sold as food. A common degenerated forward primer and five specie-specific reverse primers were designed to amplify COI gene regions of different lengths. Another primer pair targeted the 28SrRNA gene and was intended as common positive reaction control. Considering the high level of degradation in the DNA extracted from acidified and salted products, the maximum length of the amplicons was set at 200 bp. The PCR was developed using 66 reference DNA samples. It gave successful amplifications in 85.4% of 48 ready to eat products (REs) and in 60% of 30 classical salted products (CPs) collected on the market.
Food Analytical Methods | 2016
Andrea Armani; Alice Giusti; Lisa Guardone; Lorenzo Castigliego; Daniela Gianfaldoni; Alessandra Guidi
M13 universal non-homologous oligonucleotide tails incorporated into universal primers have been shown to improve amplification and sequencing performance. However, a few protocols use these tails in the field of food inspection. In this study, two types of M13 tails (by Steffens and Messing) were selected to assess their benefits using universal cytochrome oxidase subunit I (COI) and 16S ribosomal RNA gene (16SrRNA) primers in standard procedures. The primer characteristics were tested in silico. Then, using 20 DNA samples of edible species (birds, fishes, and mammals), their performance during PCR amplification (band recovery and intensity) and sequencing (sequence recovery, length, and Phred score) was assessed and compared. While 16SrRNA tailed and non-tailed primers performed similarly, differences were found for COI primers. Messing’s tails negatively affected the reaction outputs, while Steffens’ tails significantly improved the band intensity and the length of the final contigs based on the individual bidirectional read sequence. This different performance could be related to a destabilization effect of certain tails on primers with unfavorable mismatches on the annealing region. Even though our results cannot be generalized because the tail performances are strictly dependent on laboratory conditions, they show that appropriate tails can improve the overall throughput of the analysis, supporting food traceability.
Journal of Agricultural and Food Chemistry | 2016
Alice Giusti; Lorenzo Castigliego; Rossella Rubino; Daniela Gianfaldoni; Alessandra Guidi; Andrea Armani
The meat of Ruvettus pretiosus and Lepidocybium flavobrunneum (gemfishes) contains high amounts of indigestible wax esters that provoke gastrointestinal disorders. Although some countries have banned the sale of these species, mislabeling cases have been reported in sushi catering. This work developed a simple conventional multiplex PCR, which discriminates the two toxic gemfishes from other potentially replaced species, such as tunas, cod, and sablefish. A common degenerate forward primer and three species-specific reverse primers were designed to amplify cytochrome oxidase subunit I (COI) gene regions of different lengths (479, 403, and 291 bp) of gemfishes, tunas, and sablefish, respectively. A primer pair was designed to amplify a fragment (193 bp) of the cytb gene of cod species. Furthermore, a primer pair targeting the 16S rRNA gene was intended as common positive control (115 bp). The method developed in this study, by producing the expected amplicon for all of the DNA samples tested (reference and commercial), provides a rapid and reliable response in identifying the two toxic species to combat health frauds.
PLOS ONE | 2017
Alice Giusti; Andrea Armani; Carmen G. Sotelo
The Next Generation Sequencing (NGS) technologies represent a turning point in the food inspection field, particularly for species identification in matrices composed of a blend of two or more species. In this study NGS technologies were applied by testing the usefulness of the Ion Torrent Personal Genome Machine (PGM) in seafood traceability. Sixteen commercial surimi samples produced both in EU and non-EU countries were analysed. Libraries were prepared using a universal primer pair able to amplify a short 16SrRNA fragment from a wide range of fish and cephalopod species. The mislabelling rate of the samples was also evaluated. Overall, DNA from 13 families, 19 genera and 16 species of fish, and from 3 families, 3 genera and 3 species of cephalopods was found with the analysis. Samples produced in non-EU countries exhibited a higher variability in their composition. 37.5% of the surimi products were found to be mislabelled. Among them, 25% voluntary declared a species different from those identified and 25% (all produced in non-EU countries) did not report the presence of molluscs on the label, posing a potential health threat for allergic consumers. The use of vulnerable species was also proved. Although the protocol should be further optimized, PGM platform proved to be a useful tool for the analysis of complex, highly processed products.
Italian Journal of Food Safety | 2018
Lara Tinacci; Alessandra Guidi; Andrea Toto; Lisa Guardone; Alice Giusti; Priscilla D'Amico; Andrea Armani
Food Business Operators (FBOs) rely on laboratory analysis to ensure seafood traceability. DNA barcoding and Forensically Informative Nucleotide Sequencing may represent a support within self-checking programs finalized to suppliers’ qualification and products identity certification. The present study aimed at verifying the usefulness of a decisional procedure (decision tree) set up at the FishLab (Department of Veterinary Sciences, University of Pisa, Italy) for seafood species identification by DNA analysis, to cope with FBOs’ needs. The decision tree was applied to the analysis of 182 seafood (fish and molluscs) products, conferred to the FishLab by different FBOs between 2014 and 2015 as result of their self-checking activities. The analysis relied on a standard COI gene fragment eventually integrated by the analysis of alternative or supportive molecular targets (cytb and 16S rRNA). It also included a mini-DNA barcoding approach for processed products. Overall, 96.2% of the samples were unambiguously identified at species level using the elective target alone (92.4%) or a multi-target approach (3.8%). The lack of species identification (3.8%) was attributable to the absence of reference sequences or to the low resolution of the molecular targets. Nonetheless, all the molecular results were deemed adequate to evaluate the sample’s compliance to the label information. Non-compliances were highlighted in 18.1% of the products. The protocol was proven as an effective supportive tool for the seafood identity verification within the supply chain self-checking activities. In addition, a considerable fraud rate was confirmed and the species most frequently involved in substitution were pointed out.
Food Research International | 2013
Andrea Armani; Lara Tinacci; Alice Giusti; Lorenzo Castigliego; Daniela Gianfaldoni; Alessandra Guidi
Food Control | 2016
Xiong Xiong; Lisa Guardone; Alice Giusti; Lorenzo Castigliego; Daniela Gianfaldoni; Alessandra Guidi; Armani Andrea
Journal of Agricultural and Food Chemistry | 2017
Alice Giusti; Lara Tinacci; Carmen G. Sotelo; Martina Marchetti; Alessandra Guidi; Wenjie Zheng; Andrea Armani
Food Control | 2018
Alice Giusti; E. Ricci; Marcella Guarducci; Laura Gasperetti; N. Davidovich; A. Guidi; Andrea Armani
Food Control | 2019
Alice Giusti; E. Bianchi; F. Barontini; M. Cripezzi; G. Tasselli; Andrea Armani