Alicia Cabezas
University of Extremadura
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alicia Cabezas.
FEBS Letters | 2009
José Canales; Ascensión Fernández; Joaquim Rui Rodrigues; Rui Ferreira; João Meireles Ribeiro; Alicia Cabezas; María Jesús Costas; José Carlos Cameselle
Cyclic ADP‐ribose (cADPR) metabolism in mammals is catalyzed by NAD glycohydrolases (NADases) that, besides forming ADP‐ribose, form and hydrolyze the N 1‐glycosidic linkage of cADPR. Thus far, no cADPR phosphohydrolase was known. We tested rat ADP‐ribose/CDP‐alcohol pyrophosphatase (ADPRibase‐Mn) and found that cADPR is an ADPRibase‐Mn ligand and substrate. ADPRibase‐Mn activity on cADPR was 65‐fold less efficient than on ADP‐ribose, the best substrate. This is similar to the ADP‐ribose/cADPR formation ratio by NADases. The product of cADPR phosphohydrolysis by ADPRibase‐Mn was N 1‐(5‐phosphoribosyl)‐AMP, suggesting a novel route for cADPR turnover.
PLOS ONE | 2016
Iralis López-Villamizar; Alicia Cabezas; Rosa María Pinto; José Canales; João Meireles Ribeiro; José Carlos Cameselle; María Jesús Costas
Endogenous cyclic diadenylate phosphodiesterase activity was accidentally detected in lysates of Escherichia coli BL21. Since this kind of activity is uncommon in Gram-negative bacteria, its identification was undertaken. After partial purification and analysis by denaturing gel electrophoresis, renatured activity correlated with a protein identified by fingerprinting as CpdB (cpdB gene product), which is annotated as 3´-nucleotidase / 2´,3´-cyclic-mononucleotide phosphodiesterase, and it is synthesized as a precursor protein with a signal sequence removable upon export to the periplasm. It has never been studied as a recombinant protein. The coding sequence of mature CpdB was cloned and expressed as a GST fusion protein. The study of the purified recombinant protein, separated from GST, confirmed CpdB annotation. The assay of catalytic efficiencies (kcat/Km) for a large substrate set revealed novel CpdB features, including very high efficiencies for 3´-AMP and 2´,3´-cyclic mononucleotides, and previously unknown activities on cyclic and linear dinucleotides. The catalytic efficiencies of the latter activities, though low in relative terms when compared to the major ones, are far from negligible. Actually, they are perfectly comparable to those of the ‘average’ enzyme and the known, bona fide cyclic dinucleotide phosphodiesterases. On the other hand, CpdB differs from these enzymes in its extracytoplasmic location and in the absence of EAL, HD and DHH domains. Instead, it contains the domains of the 5´-nucleotidase family pertaining to the metallophosphoesterase superfamily, although CpdB lacks 5´-nucleotidase activity. The possibility that the extracytoplasmic activity of CpdB on cyclic dinucleotides could have physiological meaning is discussed.
Journal of Biological Chemistry | 2014
Joaquim Rui Rodrigues; Ana Couto; Alicia Cabezas; Rosa María Pinto; João Meireles Ribeiro; José Canales; María Jesús Costas; José Carlos Cameselle
Background: Triokinase, which phosphorylates dihydroxyacetone and fructose-derived glyceraldehyde, remains molecularly unidentified. Results: Human DAK gene encodes homodimeric triokinase/FMN cyclase formed by two-domain subunits. Although kinase activity requires intact homodimers, cyclase requires only a truncated, single domain subunit. Conclusion: Triokinase/FMN cyclase identity and bifunctionality are established. Significance: This study molecularly dissects a bifunctional enzyme of unusual specificity and finishes the molecular identification of fructose pathway enzymes. Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4′-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr112 (hydrogen bonding of ATP adenine to K in the closed active center), His221 (covalent anchoring of dihydroxyacetone to K), Asp401 and Asp403 (metal coordination to L), and Asp556 (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His221 point mutant acted specifically as a cyclase without kinase activity.
PLOS ONE | 2012
Joaquim Rui Rodrigues; Ascensión Fernández; José Canales; Alicia Cabezas; João Meireles Ribeiro; María Jesús Costas; José Carlos Cameselle
The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg2+ and active with low micromolar Mn2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR) in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn2+, significant (≈25%) Mg2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart). The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily.
Molecular Microbiology | 2010
María Jesús Costas; Rosa María Pinto; Paloma Martín Cordero; Alicia Cabezas; I. Alves-Pereira; José Carlos Cameselle; João Meireles Ribeiro
A novel enzyme, induced by choline, ethanolamine, glycine betaine or dimethylglycine, was released at low temperature and phosphate from Pseudomonas fluorescens (CECT 7229) suspensions at low cell densities. It is a CDP‐ethanolamine pyrophosphatase/(dihexanoyl)glycerophosphoethanolamine phosphodiesterase (CGDEase) less active on choline derivatives, and inactive on long‐chain phospholipids, CDP‐glycerol and other NDP‐X compounds. The reaction pattern was typical of phospholipase C (PLC), as either phosphoethanolamine or phosphocholine was produced. Peptide‐mass analyses, gene cloning and expression provided a molecular identity for CGDEase. Bioinformatic studies assigned it to the PLC branch of the phospholipase C/acid phosphatase (PLC/APase) superfamily, revealed an irregular phylogenetic distribution of close CGDEase relatives, and suggested their genes are not in operons or conserved contexts. A theoretical CGDEase structure was supported by mutagenesis of two predicted active‐site residues, which yielded essentially inactive mutants. Biological relevance is supported by comparisons with CGDEase relatives, induction by osmoprotectants (not by osmotic stress itself) and repression by micromolar phosphate. The low bacterial density requirement was related to phosphate liberation from lysed bacteria in denser populations, rather than to a classical quorum‐sensing effect. The results fit better a CGDEase role in phosphate scavenging than in osmoprotection.
PLOS ONE | 2015
Alicia Cabezas; João Meireles Ribeiro; Joaquim Rui Rodrigues; Iralis López-Villamizar; Ascensión Fernández; José Canales; Rosa María Pinto; María Jesús Costas; José Carlos Cameselle
Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose K m and unchanged k cat of F37A-ADPRibase-Mn, while the K m values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type.
Scientific Reports | 2018
João Meireles Ribeiro; José Canales; Alicia Cabezas; Joaquim Rui Rodrigues; Rosa M. Pintó; Iralis López-Villamizar; María Jesús Costas; José Carlos Cameselle
Cyclic ADP-ribose (cADPR) is a messenger for Ca2+ mobilization. Its turnover is believed to occur by glycohydrolysis to ADP-ribose. However, ADP-ribose/CDP-alcohol diphosphatase (ADPRibase-Mn) acts as cADPR phosphohydrolase with much lower efficiency than on its major substrates. Recently, we showed that mutagenesis of human ADPRibase-Mn at Phe37, Leu196 and Cys253 alters its specificity: the best substrate of the mutant F37A + L196F + C253A is cADPR by a short difference, Cys253 mutation being essential for cADPR preference. Its proximity to the ‘northern’ ribose of cADPR in docking models indicates Cys253 is a steric constraint for cADPR positioning. Aiming to obtain a specific cADPR phosphohydrolase, new mutations were tested at Asp250, Val252, Cys253 and Thr279, all near the ‘northern’ ribose. First, the mutant F37A + L196F + C253G, with a smaller residue 253 (Ala > Gly), showed increased cADPR specificity. Then, the mutant F37A + L196F + V252A + C253G, with another residue made smaller (Val > Ala), displayed the desired specificity, with cADPR kcat/KM ≈20–200-fold larger than for any other substrate. When tested in nucleotide mixtures, cADPR was exhausted while others remained unaltered. We suggest that the specific cADPR phosphohydrolase, by cell or organism transgenesis, or the designed mutations, by genome editing, provide opportunities to study the effect of cADPR depletion on the many systems where it intervenes.
Biochemical and Biophysical Research Communications | 2005
Alicia Cabezas; María Jesús Costas; Rosa María Pinto; Ana Couto; José Carlos Cameselle
Biochemical Journal | 2008
José Canales; Ascensión Fernández; João Meireles Ribeiro; Alicia Cabezas; Joaquim Rui Rodrigues; José Carlos Cameselle; María Jesús Costas
Journal of Bacteriology | 2008
I. Alves-Pereira; José Canales; Alicia Cabezas; Paloma Martín Cordero; María Jesús Costas; José Carlos Cameselle