Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Canales is active.

Publication


Featured researches published by José Canales.


Biochimica et Biophysica Acta | 1996

Specific ADP-ribose pyrophosphatase from Artemia cysts and rat liver: effects of nitroprusside, fluoride and ionic strength

Ascensión Fernández; João Meireles Ribeiro; María Jesús Costas; Rosa María Pinto; José Canales; JoséCarlos Cameselle

One specific ADP-ribose pyrophosphatase (ADPRibase) has been identified in Artemia cysts, following a protocol that in rat liver allows the identification of three ADPRibases. Artemia ADPRibase resulted similar, but not identical, to rat liver ADPRibase-I with respect to known and novel properties disclosed in this work. In the presence of Mg2+, Artemia ADPRibase was highly specific for ADP-ribose and showed a low, 0.7 microM Km. Preincubation with the nitric oxide donor nitroprusside and dithiothreitol, elicited dose- and time-dependent, severalfold increase of Km and decrease of Vmax. At saturating ADP-ribose concentrations, fluoride was a strong inhibitor (IC50 approximately equal to 10-20 microM), whereas bringing ionic strength to 0.3-1.3 mol/l doubled the activity measured at lower or higher strengths. The novel fluoride and ionic strength effects were studied also with rat liver ADPRibase-I. Differences between the Artemia enzyme and ADPRibase-I concerned molecular weight (31,000 versus 38,500, respectively), Mn2+ ability to substitute for Mg2+ as the activating cation (better for the rat enzyme), and Vmax decrease by nitroprusside (not seen with the rat enzyme). The results are discussed in relation with the role of specific ADPRibases as protective factors limiting free ADP-ribose accumulation and protein glycation, and as targets for cytotoxic agents.


FEBS Letters | 2009

Hydrolysis of the phosphoanhydride linkage of cyclic ADP-ribose by the Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase

José Canales; Ascensión Fernández; Joaquim Rui Rodrigues; Rui Ferreira; João Meireles Ribeiro; Alicia Cabezas; María Jesús Costas; José Carlos Cameselle

Cyclic ADP‐ribose (cADPR) metabolism in mammals is catalyzed by NAD glycohydrolases (NADases) that, besides forming ADP‐ribose, form and hydrolyze the N 1‐glycosidic linkage of cADPR. Thus far, no cADPR phosphohydrolase was known. We tested rat ADP‐ribose/CDP‐alcohol pyrophosphatase (ADPRibase‐Mn) and found that cADPR is an ADPRibase‐Mn ligand and substrate. ADPRibase‐Mn activity on cADPR was 65‐fold less efficient than on ADP‐ribose, the best substrate. This is similar to the ADP‐ribose/cADPR formation ratio by NADases. The product of cADPR phosphohydrolysis by ADPRibase‐Mn was N 1‐(5‐phosphoribosyl)‐AMP, suggesting a novel route for cADPR turnover.


Comparative Biochemistry and Physiology B | 1985

IMP dehydrogenase from Artemia embryos: Molecular forms, purification and properties

José Canales; Ascensión Fernández; Angeles Faraldo; Rosa María Pinto; Antonio Sillero; María A. Günther Sillero

Abstract 1. 1. IMP dehydrogenase (EC 1.2.1.14) has been purified near homogeneity from Artemia embryos. 2. 2. The K m values for IMP and NAD + were 15 and 200 μM, respectively. 3. 3. GMP, XMP, GTP, guanosine 5′-tetraphosphate and diguanosine tetraphosphate (Gp 4 G) were competitive inhibitors of the reaction towards IMP with K i values of 140, 180, 175, 120 and 87 μM, respectively. 4. 4. The enzyme from the 27,000 g supernatant can occur in a number of oligomeric forms (450, 375, 260 or 220 kDa) depending on the ionic strength of the medium. 5. 5. Upon precipitation with ammonium sulphate (0.3–0.4 saturation) the enzyme aggregates forming complexes of more than 1000 kDa.


PLOS ONE | 2016

The Characterization of Escherichia coli CpdB as a Recombinant Protein Reveals that, besides Having the Expected 3´-Nucleotidase and 2´,3´-Cyclic Mononucleotide Phosphodiesterase Activities, It Is Also Active as Cyclic Dinucleotide Phosphodiesterase.

Iralis López-Villamizar; Alicia Cabezas; Rosa María Pinto; José Canales; João Meireles Ribeiro; José Carlos Cameselle; María Jesús Costas

Endogenous cyclic diadenylate phosphodiesterase activity was accidentally detected in lysates of Escherichia coli BL21. Since this kind of activity is uncommon in Gram-negative bacteria, its identification was undertaken. After partial purification and analysis by denaturing gel electrophoresis, renatured activity correlated with a protein identified by fingerprinting as CpdB (cpdB gene product), which is annotated as 3´-nucleotidase / 2´,3´-cyclic-mononucleotide phosphodiesterase, and it is synthesized as a precursor protein with a signal sequence removable upon export to the periplasm. It has never been studied as a recombinant protein. The coding sequence of mature CpdB was cloned and expressed as a GST fusion protein. The study of the purified recombinant protein, separated from GST, confirmed CpdB annotation. The assay of catalytic efficiencies (kcat/Km) for a large substrate set revealed novel CpdB features, including very high efficiencies for 3´-AMP and 2´,3´-cyclic mononucleotides, and previously unknown activities on cyclic and linear dinucleotides. The catalytic efficiencies of the latter activities, though low in relative terms when compared to the major ones, are far from negligible. Actually, they are perfectly comparable to those of the ‘average’ enzyme and the known, bona fide cyclic dinucleotide phosphodiesterases. On the other hand, CpdB differs from these enzymes in its extracytoplasmic location and in the absence of EAL, HD and DHH domains. Instead, it contains the domains of the 5´-nucleotidase family pertaining to the metallophosphoesterase superfamily, although CpdB lacks 5´-nucleotidase activity. The possibility that the extracytoplasmic activity of CpdB on cyclic dinucleotides could have physiological meaning is discussed.


Journal of Biological Chemistry | 2014

Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements.

Joaquim Rui Rodrigues; Ana Couto; Alicia Cabezas; Rosa María Pinto; João Meireles Ribeiro; José Canales; María Jesús Costas; José Carlos Cameselle

Background: Triokinase, which phosphorylates dihydroxyacetone and fructose-derived glyceraldehyde, remains molecularly unidentified. Results: Human DAK gene encodes homodimeric triokinase/FMN cyclase formed by two-domain subunits. Although kinase activity requires intact homodimers, cyclase requires only a truncated, single domain subunit. Conclusion: Triokinase/FMN cyclase identity and bifunctionality are established. Significance: This study molecularly dissects a bifunctional enzyme of unusual specificity and finishes the molecular identification of fructose pathway enzymes. Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4′-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr112 (hydrogen bonding of ATP adenine to K in the closed active center), His221 (covalent anchoring of dihydroxyacetone to K), Asp401 and Asp403 (metal coordination to L), and Asp556 (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His221 point mutant acted specifically as a cyclase without kinase activity.


PLOS ONE | 2012

Characterization of Danio rerio Mn2+-Dependent ADP-Ribose/CDP-Alcohol Diphosphatase, the Structural Prototype of the ADPRibase-Mn-Like Protein Family

Joaquim Rui Rodrigues; Ascensión Fernández; José Canales; Alicia Cabezas; João Meireles Ribeiro; María Jesús Costas; José Carlos Cameselle

The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg2+ and active with low micromolar Mn2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR) in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn2+, significant (≈25%) Mg2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart). The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily.


FEBS Letters | 1994

Detection of specific glucose-3-phosphatase activity in rat liver

José Canales; Francisco Buitrago; Angeles Faraldo; José Carlos Cameselle

Sugar‐3‐phosphates are related to aspects of diabetes which depend on protein glycosylation events. Sorbitol‐3‐phosphate and fructose‐3‐phosphate occur in normal and diabetic individuals, and glucose‐3‐phosphate is a potential intermediate in their biosynthesis. Almost nothing is known about enzyme pathways for their metabolic turnover. We have found that part of the phosphohydrolytic activity on glucose‐3‐phosphate in rat liver supernatants corresponds to a specific, Mg2+‐dependent, glucose‐3‐phosphatase much less or not active on other phosphate esters, including glucose‐1‐phosphate, glucose‐6‐phosphate, fructose‐1‐phosphate, fructose‐6‐phosphate and p‐nitrophenyl‐phosphate. This finding opens a route to a better understanding of the metabolism and role of sugar‐3‐phosphates.


PLOS ONE | 2015

Molecular bases of catalysis and ADP-ribose preference of human Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase and conversion by mutagenesis to a preferential cyclic ADP-ribose phosphohydrolase.

Alicia Cabezas; João Meireles Ribeiro; Joaquim Rui Rodrigues; Iralis López-Villamizar; Ascensión Fernández; José Canales; Rosa María Pinto; María Jesús Costas; José Carlos Cameselle

Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose K m and unchanged k cat of F37A-ADPRibase-Mn, while the K m values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type.


Journal of Molecular Catalysis B-enzymatic | 2001

Nucleotide ester-forming alcoholytic activities of nucleotide pyrophosphatases: implications for practical biotransformation, enzyme mechanisms and biological function

José Carlos Cameselle; Antonio Agudo; José Canales; María Jesús Costas; Ascensión Fernández; Ana Flores; Miguel García‐Díaz; Santiago González-Santiago; Juan López-Gómez; João Meireles Ribeiro; José maría Vergeles

Abstract Nucleotide pyrophosphatases (NPP) hydrolyze phosphoanhydride and phosphodiester derivatives of nucleoside 5′-monophosphates (NMP) yielding NMP as a product. In a water–alcohol mixture, the alcohol (R–OH) competes and substitutes for water as the splitting agent, so a mixture of NMP and NMP-O-alkyl ester (NMP-O-R) is formed. NPPs from snake venom, potato tuber and mammalian tissues have been studied in this regard. Snake and potato NPPs were considered as possible practical biocatalysts to synthesize NMP-O-Rs from various nucleotidic substrates and alcohols. Mammalian NPPs, mainly from human blood and rat liver, were studied considering the possibility that the alcoholytic reactions catalyzed by them could be biologically relevant. Valuable information on the active centers and catalytic mechanisms of NPPs was also obtained.


Scientific Reports | 2018

Specific cyclic ADP-ribose phosphohydrolase obtained by mutagenic engineering of Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase

João Meireles Ribeiro; José Canales; Alicia Cabezas; Joaquim Rui Rodrigues; Rosa M. Pintó; Iralis López-Villamizar; María Jesús Costas; José Carlos Cameselle

Cyclic ADP-ribose (cADPR) is a messenger for Ca2+ mobilization. Its turnover is believed to occur by glycohydrolysis to ADP-ribose. However, ADP-ribose/CDP-alcohol diphosphatase (ADPRibase-Mn) acts as cADPR phosphohydrolase with much lower efficiency than on its major substrates. Recently, we showed that mutagenesis of human ADPRibase-Mn at Phe37, Leu196 and Cys253 alters its specificity: the best substrate of the mutant F37A + L196F + C253A is cADPR by a short difference, Cys253 mutation being essential for cADPR preference. Its proximity to the ‘northern’ ribose of cADPR in docking models indicates Cys253 is a steric constraint for cADPR positioning. Aiming to obtain a specific cADPR phosphohydrolase, new mutations were tested at Asp250, Val252, Cys253 and Thr279, all near the ‘northern’ ribose. First, the mutant F37A + L196F + C253G, with a smaller residue 253 (Ala > Gly), showed increased cADPR specificity. Then, the mutant F37A + L196F + V252A + C253G, with another residue made smaller (Val > Ala), displayed the desired specificity, with cADPR kcat/KM ≈20–200-fold larger than for any other substrate. When tested in nucleotide mixtures, cADPR was exhausted while others remained unaltered. We suggest that the specific cADPR phosphohydrolase, by cell or organism transgenesis, or the designed mutations, by genome editing, provide opportunities to study the effect of cADPR depletion on the many systems where it intervenes.

Collaboration


Dive into the José Canales's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia Cabezas

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angeles Faraldo

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar

Antonio Sillero

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge