Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia K. Olivier is active.

Publication


Featured researches published by Alicia K. Olivier.


Molecular Cell | 2010

Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress.

Randa Tao; Mitchell C. Coleman; J. Daniel Pennington; Ozkan Ozden; Seong Hoon Park; Haiyan Jiang; Hyun-Seok Kim; Charles R. Flynn; Salisha Hill; W. Hayes McDonald; Alicia K. Olivier; Douglas R. Spitz; David Gius

Genetic deletion of the mitochondrial deacetylase sirtuin-3 (Sirt3) results in increased mitochondrial superoxide, a tumor-permissive environment, and mammary tumor development. MnSOD contains a nutrient- and ionizing radiation (IR)-dependent reversible acetyl-lysine that is hyperacetylated in Sirt3⁻/⁻ livers at 3 months of age. Livers of Sirt3⁻/⁻ mice exhibit decreased MnSOD activity, but not immunoreactive protein, relative to wild-type livers. Reintroduction of wild-type but not deacetylation null Sirt3 into Sirt3⁻/⁻ MEFs deacetylated lysine and restored MnSOD activity. Site-directed mutagenesis of MnSOD lysine 122 to an arginine, mimicking deacetylation (lenti-MnSOD(K122-R)), increased MnSOD activity when expressed in MnSOD⁻/⁻ MEFs, suggesting acetylation directly regulates function. Furthermore, infection of Sirt3⁻/⁻ MEFs with lenti-MnSOD(K122-R) inhibited in vitro immortalization by an oncogene (Ras), inhibited IR-induced genomic instability, and decreased mitochondrial superoxide. Finally, IR was unable to induce MnSOD deacetylation or activity in Sirt3⁻/⁻ livers, and these irradiated livers displayed significant IR-induced cell damage and microvacuolization in their hepatocytes.


Veterinary Pathology | 2013

Principles for Valid Histopathologic Scoring in Research

Katherine N. Gibson-Corley; Alicia K. Olivier; David K. Meyerholz

Histopathologic scoring is a tool by which semiquantitative data can be obtained from tissues. Initially, a thorough understanding of the experimental design, study objectives, and methods is required for the pathologist to appropriately examine tissues and develop lesion scoring approaches. Many principles go into the development of a scoring system such as tissue examination, lesion identification, scoring definitions, and consistency in interpretation. Masking (aka “blinding”) of the pathologist to experimental groups is often necessary to constrain bias, and multiple mechanisms are available. Development of a tissue scoring system requires appreciation of the attributes and limitations of the data (eg, nominal, ordinal, interval, and ratio data) to be evaluated. Incidence, ordinal, and rank methods of tissue scoring are demonstrated along with key principles for statistical analyses and reporting. Validation of a scoring system occurs through 2 principal measures: (1) validation of repeatability and (2) validation of tissue pathobiology. Understanding key principles of tissue scoring can help in the development and/or optimization of scoring systems so as to consistently yield meaningful and valid scoring data.


Journal of Clinical Investigation | 2012

Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets

Alicia K. Olivier; Yaling Yi; Xingshen Sun; Hongshu Sui; Bo Liang; Shanming Hu; Weiliang Xie; John T. Fisher; Nicholas W. Keiser; Diana Lei; Weihong Zhou; Ziying Yan; Guiying Li; Turan I.A. Evans; David K. Meyerholz; Kai Wang; Zoe A. Stewart; Andrew W. Norris; John F. Engelhardt

Diabetes is a common comorbidity in cystic fibrosis (CF) that worsens prognosis. The lack of an animal model for CF-related diabetes (CFRD) has made it difficult to dissect how the onset of pancreatic pathology influences the emergence of CFRD. We evaluated the structure and function of the neonatal CF endocrine pancreas using a new CFTR-knockout ferret model. Although CF kits are born with only mild exocrine pancreas disease, progressive exocrine and endocrine pancreatic loss during the first months of life was associated with pancreatic inflammation, spontaneous hyperglycemia, and glucose intolerance. Interestingly, prior to major exocrine pancreas disease, CF kits demonstrated significant abnormalities in blood glucose and insulin regulation, including diminished first-phase and accentuated peak insulin secretion in response to glucose, elevated peak glucose levels following glucose challenge, and variably elevated insulin and C-peptide levels in the nonfasted state. Although there was no difference in lobular insulin and glucagon expression between genotypes at birth, significant alterations in the frequencies of small and large islets were observed. Newborn cultured CF islets demonstrated dysregulated glucose-dependent insulin secretion in comparison to controls, suggesting intrinsic abnormalities in CF islets. These findings demonstrate that early abnormalities exist in the regulation of insulin secretion by the CF endocrine pancreas.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Inflammasome-independent IL-1β mediates autoinflammatory disease in Pstpip2-deficient mice.

Suzanne L. Cassel; John R. Janczy; Xinyu Bing; Shruti P. Wilson; Alicia K. Olivier; Jesse E. Otero; Yoichiro Iwakura; Dmitry M. Shayakhmetov; Alexander G. Bassuk; Yousef Abu-Amer; Kim A. Brogden; Trudy L. Burns; Fayyaz S. Sutterwala; Polly J. Ferguson

Significance Chronic recurrent multifocal osteomyelitis (CRMO) is a human disorder of the innate immune system that causes bone inflammation that mimics infectious osteomyelitis. There is a spontaneous mutant mouse model of the disease that is caused by homozygous mutations in the gene Pstpip2. Our studies show that bone inflammation in this model is mediated by the cytokine IL-1β, but that the disease is independent of the nucleotide-binding domain, leucine-rich repeat-containing family, pyrin domain-containing 3 (NLRP3) inflammasome and caspase-1, which is different from most other IL-1–mediated disorders. Further, we implicate neutrophils and neutrophil serine proteases in disease pathogenesis. These data provide a rationale for directly targeting the IL-1 receptor or IL-1β as a therapeutic strategy in CRMO. Chronic recurrent multifocal osteomyelitis (CRMO) is a human autoinflammatory disorder that primarily affects bone. Missense mutation (L98P) of proline-serine-threonine phosphatase-interacting protein 2 (Pstpip2) in mice leads to a disease that is phenotypically similar to CRMO called chronic multifocal osteomyelitis (cmo). Here we show that deficiency of IL-1RI in cmo mice resulted in a significant reduction in the time to onset of disease as well as the degree of bone pathology. Additionally, the proinflammatory cytokine IL-1β, but not IL-1α, played a critical role in the pathology observed in cmo mice. In contrast, disease in cmo mice was found to be independent of the nucleotide-binding domain, leucine-rich repeat-containing family, pyrin domain-containing 3 (NLRP3) inflammasome as well as caspase-1. Neutrophils, but not bone marrow-derived macrophages, from cmo mice secreted increased IL-1β in response to ATP, silica, and Pseudomonas aeruginosa compared with neutrophils from WT mice. This aberrant neutrophil response was sensitive to inhibition by serine protease inhibitors. These results demonstrate an inflammasome-independent role for IL-1β in disease progression of cmo and implicate neutrophils and neutrophil serine proteases in disease pathogenesis. These data provide a rationale for directly targeting IL-1RI or IL-1β as a therapeutic strategy in CRMO.


Journal of Immunology | 2012

Cutting Edge: Nlrp10 Is Essential for Protective Antifungal Adaptive Immunity against Candida albicans

Sophie Joly; Stephanie C. Eisenbarth; Alicia K. Olivier; Adam Williams; Daniel H. Kaplan; Suzanne L. Cassel; Richard A. Flavell; Fayyaz S. Sutterwala

Nucleotide-binding domain leucine-rich repeat containing receptors (NLRs) are cytosolic receptors that initiate immune responses to sterile and infectious insults to the host. Studies demonstrated that Nlrp3 is critical for the control of Candida albicans infections and in the generation of antifungal Th17 responses. In this article, we show that the NLR family member Nlrp10 also plays a unique role in the control of disseminated C. albicans infection in vivo. Nlrp10-deficient mice had increased susceptibility to disseminated candidiasis, as indicated by decreased survival and increased fungal burdens. In contrast to Nlrp3, Nlrp10 deficiency did not affect innate proinflammatory cytokine production from macrophages and dendritic cells challenged with C. albicans. However, Nlrp10-deficient mice displayed a profound defect in Candida-specific Th1 and Th17 responses. These results demonstrate a novel role for Nlrp10 in the generation of adaptive immune responses to fungal infection.


International Journal of Experimental Pathology | 2009

Human respiratory syncytial virus A2 strain replicates and induces innate immune responses by respiratory epithelia of neonatal lambs

Alicia K. Olivier; Jack M. Gallup; Márcia Macêdo; Steven M. Varga; Mark R. Ackermann

Human respiratory syncytial virus (hRSV) is a pneumovirus that causes significant respiratory disease in premature and full‐term infants. It was our hypothesis that a common strain of RSV, strain A2, would infect, cause pulmonary pathology, and alter respiratory epithelial innate immune responses in neonatal lambs similarly to RSV infection in human neonates. Newborn lambs between 2 and 3 days of age were inoculated intrabronchially with RSV strain A2. The lambs were sacrificed at days 3, 6, and 14 days postinoculation. Pulmonary lesions in the 6‐day postinoculation group were typical of RSV infection including bronchiolitis with neutrophils and mild peribronchiolar interstitial pneumonia. RSV mRNA and antigen were detected by qPCR and immunohistochemistry, respectively with peak mRNA levels and antigen at day 6. Expression of surfactant proteins A and D, sheep beta‐defensin‐1 and thyroid transcription factor‐1 mRNA were also assessed by real‐time qPCR. There was a significant increase in surfactant A and D mRNA expression in RSV‐infected animals at day 6 postinoculation. There were no significant changes in sheep beta‐defensin‐1 and thyroid transcription factor‐1 mRNA expression. This study shows that neonatal lambs can be infected with RSV strain A2 and the pulmonary pathology mimics that of RSV infection in human infants thereby making the neonatal lamb a useful animal model to study disease pathogenesis and therapeutics. RSV infection induces increased expression of surfactant proteins A and D in lambs, which may also be an important feature of infection in newborn infants.


American Journal of Respiratory Cell and Molecular Biology | 2014

Lung Phenotype of Juvenile and Adult Cystic Fibrosis Transmembrane Conductance Regulator–Knockout Ferrets

Xingshen Sun; Alicia K. Olivier; Bo Liang; Yaling Yi; Hongshu Sui; Turan I.A. Evans; Yulong Zhang; Weihong Zhou; Scott R. Tyler; John T. Fisher; Nicholas W. Keiser; Xiaoming Liu; Ziying Yan; Yi Song; J. Adam Goeken; Joann M. Kinyon; Danielle Fligg; Xiaoyan Wang; Weiliang Xie; Thomas J. Lynch; Paul M. Kaminsky; Zoe A. Stewart; R. Marshall Pope; Timothy S. Frana; David K. Meyerholz; Kalpaj R. Parekh; John F. Engelhardt

Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator-knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets.


Clinical Science | 2015

Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass

Aliye Uc; Alicia K. Olivier; Michelle Griffin; David K. Meyerholz; Jianrong Yao; Maisam Abu-El-Haija; Katherine M. Buchanan; Oriana G. Vanegas Calderón; Marwa Abu-El-Haija; Alejandro A. Pezzulo; Leah R. Reznikov; Mark J. Hoegger; Michael V. Rector; Lynda S. Ostedgaard; Peter J. Taft; Nick D. Gansemer; Paula S. Ludwig; Emma E. Hornick; David A. Stoltz; Katie Larson Ode; Michael J. Welsh; John F. Engelhardt; Andrew W. Norris

Diabetes is a common and significant co-morbidity in cystic fibrosis (CF). The pathogenesis of cystic fibrosis related diabetes (CFRD) is incompletely understood. Because exocrine pancreatic disease is similar between humans and pigs with CF, the CF pig model has the potential to contribute significantly to the understanding of CFRD pathogenesis. We determined the structure of the endocrine pancreas in fetal, newborn and older CF and non-CF pigs and assessed endocrine pancreas function by intravenous glucose tolerance test (IV-GTT). In fetal pigs, pancreatic insulin and glucagon density was similar between CF and non-CF. In newborn and older pigs, the insulin and glucagon density was unchanged between CF and non-CF per total pancreatic area, but increased per remnant lobular tissue in CF reflecting exocrine pancreatic loss. Although fasting glucose levels were not different between CF and non-CF newborns, CF newborns demonstrated impaired glucose tolerance and increased glucose area under the curve during IV-GTT. Second phase insulin secretion responsiveness was impaired in CF newborn pigs and significantly lower than that observed in non-CF newborns. Older CF pigs had elevated random blood glucose levels compared with non-CF. In summary, glycaemic abnormalities and insulin secretion defects were present in newborn CF pigs and spontaneous hyperglycaemia developed over time. Functional changes in CF pig pancreas were not associated with a decline in islet cell mass. Our results suggest that functional islet abnormalities, independent of structural islet loss, contribute to the early pathogenesis of CFRD.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

Respiratory syncytial virus is associated with an inflammatory response in lungs and architectural remodeling of lung-draining lymph nodes of newborn lambs

Fatoumata B. Sow; Jack M. Gallup; Alicia K. Olivier; Subramaniam Krishnan; Andriani C. Patera; JoAnn Suzich; Mark R. Ackermann

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in children worldwide. The understanding of neonatal RSV pathogenesis depends on using an animal model that reproduces neonatal RSV disease. Previous studies from us and others demonstrated that the neonatal lamb model resembles human neonatal RSV infection. Here, we provide an extensive and detailed characterization of the histopathology, viral load, cellular infiltration, and cytokine production in lungs and tracheobronchial lymph nodes of lambs inoculated with human RSV strain A2 over the course of infection. In the lung, RSV titers were low at day 3 postinfection, increased significantly by day 6, and decreased to baseline levels at day 14. Infection in the lung was associated with an accumulation of macrophages, CD4(+) and CD8(+) T cells, and a transcriptional response of genes involved in inflammation, chemotaxis, and interferon response, characterized by increased IFNγ, IL-8, MCP-1, and PD-L1, and decreased IFNβ, IL-10, and TGF-β. Laser capture microdissection studies determined that lung macrophage-enriched populations were the source of MCP-1 but not IL-8. Immunoreactivity to caspase 3 occurred within bronchioles and alveoli of day 6-infected lambs. In lung-draining lymph nodes, RSV induced lymphoid hyperplasia, suggesting an ability of RSV to enhance lymphocytic proliferation and differentiation pathways. This study suggests that, in lambs with moderate clinical disease, RSV enhances the activation of caspase cell death and Th1-skewed inflammatory pathways, and complements previous observations that emphasize the role of inflammation in the pathogenesis of RSV disease.


Science Translational Medicine | 2013

CaMKII Is Essential for the Proasthmatic Effects of Oxidation

Philip N. Sanders; Olha M. Koval; Omar A. Jaffer; Anand M. Prasad; Thomas R. Businga; Jason A. Scott; Patrick J. Hayden; Elizabeth D. Luczak; David D. Dickey; Chantal Allamargot; Alicia K. Olivier; David K. Meyerholz; Alfred J. Robison; Danny G. Winder; Timothy S. Blackwell; Ryszard Dworski; David Sammut; Brett A. Wagner; Garry R. Buettner; Robert M. Pope; Francis J. Miller; Megan E. Dibbern; Hans Michael Haitchi; Peter J. Mohler; Peter H. Howarth; Joseph Zabner; Joel N. Kline; Isabella M. Grumbach; Mark E. Anderson

Ca2+/calmodulin-dependent protein kinase (CaMKII) transduces oxidative stress into asthma-related diseases. A Breath of Fresh Air for Asthma Patients Reactive oxygen species (ROS) have a bad reputation, and rightly so. They’ve been implicated in contributing to a wide swath of diseases, including coronary heart disease, cancer, and asthma. Indeed, asthma is an increasing public health burden—affecting 8.5% of the population in the United States alone. Now Sanders et al. find that oxidative activation of the Ca2+/calmodulin-dependent protein kinase (ox-CaMKII) may respond to ROS in lung epithelium and contribute to asthma pathogenesis. The authors observed that asthma patients have enhanced activation of ox-CaMKII in bronchial epithelium, which increases in response to inhaled antigen. Then they looked in two different mouse models of allergic asthma to examine the mechanistic connection. They found that blocking CaMKII either genetically or with a small-molecule inhibitor could alleviate ROS-mediated asthma progression. These data suggest that blocking CaMKII could be a new therapeutic strategy for asthma patients. Increased reactive oxygen species (ROS) contribute to asthma, but little is known about the molecular mechanisms connecting increased ROS with characteristic features of asthma. We show that enhanced oxidative activation of the Ca2+/calmodulin-dependent protein kinase (ox-CaMKII) in bronchial epithelium positively correlates with asthma severity and that epithelial ox-CaMKII increases in response to inhaled allergens in patients. We used mouse models of allergic airway disease induced by ovalbumin (OVA) or Aspergillus fumigatus (Asp) and found that bronchial epithelial ox-CaMKII was required to increase a ROS- and picrotoxin-sensitive Cl− current (ICl) and MUC5AC expression, upstream events in asthma progression. Allergen challenge increased epithelial ROS by activating NADPH oxidases. Mice lacking functional NADPH oxidases due to knockout of p47 and mice with epithelial-targeted transgenic expression of a CaMKII inhibitory peptide or wild-type mice treated with inhaled KN-93, an experimental small-molecule CaMKII antagonist, were protected against increases in ICl, MUC5AC expression, and airway hyperreactivity to inhaled methacholine. Our findings support the view that CaMKII is a ROS-responsive, pluripotent proasthmatic signal and provide proof-of-concept evidence that CaMKII is a therapeutic target in asthma.

Collaboration


Dive into the Alicia K. Olivier's collaboration.

Top Co-Authors

Avatar

David K. Meyerholz

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siegfried Janz

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine N. Gibson-Corley

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge