Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fayyaz S. Sutterwala is active.

Publication


Featured researches published by Fayyaz S. Sutterwala.


Nature | 2008

Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants

Stephanie C. Eisenbarth; Oscar R. Colegio; William O’Connor; Fayyaz S. Sutterwala; Richard A. Flavell

Aluminium adjuvants, typically referred to as ‘alum’, are the most commonly used adjuvants in human and animal vaccines worldwide, yet the mechanism underlying the stimulation of the immune system by alum remains unknown. Toll-like receptors are critical in sensing infections and are therefore common targets of various adjuvants used in immunological studies. Although alum is known to induce the production of proinflammatory cytokines in vitro, it has been repeatedly demonstrated that alum does not require intact Toll-like receptor signalling to activate the immune system. Here we show that aluminium adjuvants activate an intracellular innate immune response system called the Nalp3 (also known as cryopyrin, CIAS1 or NLRP3) inflammasome. Production of the pro-inflammatory cytokines interleukin-1β and interleukin-18 by macrophages in response to alum in vitro required intact inflammasome signalling. Furthermore, in vivo, mice deficient in Nalp3, ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) or caspase-1 failed to mount a significant antibody response to an antigen administered with aluminium adjuvants, whereas the response to complete Freund’s adjuvant remained intact. We identify the Nalp3 inflammasome as a crucial element in the adjuvant effect of aluminium adjuvants; in addition, we show that the innate inflammasome pathway can direct a humoral adaptive immune response. This is likely to affect how we design effective, but safe, adjuvants in the future.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The Nalp3 inflammasome is essential for the development of silicosis

Suzanne L. Cassel; Stephanie C. Eisenbarth; Shankar S. Iyer; Jeffrey J. Sadler; Oscar R. Colegio; Linda A. Tephly; A. Brent Carter; Paul B. Rothman; Richard A. Flavell; Fayyaz S. Sutterwala

Inhalation of crystalline silica and asbestos is known to cause the progressive pulmonary fibrotic disorders silicosis and asbestosis, respectively. Although alveolar macrophages are believed to initiate these inflammatory responses, the mechanism by which this occurs has been unclear. Here we show that the inflammatory response and subsequent development of pulmonary fibrosis after inhalation of silica is dependent on the Nalp3 inflammasome. Stimulation of macrophages with silica results in the activation of caspase-1 in a Nalp3-dependent manner. Macrophages deficient in components of the Nalp3 inflammasome were incapable of secreting the proinflammatory cytokines interleukin (IL)-1β and IL-18 in response to silica. Similarly, asbestos was capable of activating caspase-1 in a Nalp3-dependent manner. Activation of the Nalp3 inflammasome by silica required both an efflux of intracellular potassium and the generation of reactive oxygen species. This study demonstrates a key role for the Nalp3 inflammasome in the pathogenesis of pneumoconiosis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome.

Shankar S. Iyer; Wilco P. Pulskens; Jeffrey J. Sadler; Loes M. Butter; Gwendoline J. D. Teske; Tyler K. Ulland; Stephanie C. Eisenbarth; Sandrine Florquin; Richard A. Flavell; Jaklien C. Leemans; Fayyaz S. Sutterwala

Dying cells are capable of activating the innate immune system and inducing a sterile inflammatory response. Here, we show that necrotic cells are sensed by the Nlrp3 inflammasome resulting in the subsequent release of the proinflammatory cytokine IL-1β. Necrotic cells produced by pressure disruption, hypoxic injury, or complement-mediated damage were capable of activating the Nlrp3 inflammasome. Nlrp3 inflammasome activation was triggered in part through ATP produced by mitochondria released from damaged cells. Neutrophilic influx into the peritoneum in response to necrotic cells in vivo was also markedly diminished in the absence of Nlrp3. Nlrp3-deficiency moreover protected animals against mortality, renal dysfunction, and neutrophil influx in an in vivo renal ischemic acute tubular necrosis model. These findings suggest that the inhibition of Nlrp3 inflammasome activity can diminish the acute inflammation and damage associated with tissue injury.


Journal of Clinical Investigation | 2009

Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome

Avlin B. Imaeda; Azuma Watanabe; Muhammad A. Sohail; Shamail Mahmood; Mehdi Mohamadnejad; Fayyaz S. Sutterwala; Richard A. Flavell; Wajahat Z. Mehal

Hepatocyte death results in a sterile inflammatory response that amplifies the initial insult and increases overall tissue injury. One important example of this type of injury is acetaminophen-induced liver injury, in which the initial toxic injury is followed by innate immune activation. Using mice deficient in Tlr9 and the inflammasome components Nalp3 (NACHT, LRR, and pyrin domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a CARD), and caspase-1, we have identified a nonredundant role for Tlr9 and the Nalp3 inflammasome in acetaminophen-induced liver injury. We have shown that acetaminophen treatment results in hepatocyte death and that free DNA released from apoptotic hepatocytes activates Tlr9. This triggers a signaling cascade that increases transcription of the genes encoding pro-IL-1beta and pro-IL-18 in sinusoidal endothelial cells. By activating caspase-1, the enzyme responsible for generating mature IL-1beta and IL-18 from pro-IL-1beta and pro-IL-18, respectively, the Nalp3 inflammasome plays a crucial role in the second step of proinflammatory cytokine activation following acetaminophen-induced liver injury. Tlr9 antagonists and aspirin reduced mortality from acetaminophen hepatotoxicity. The protective effect of aspirin on acetaminophen-induced liver injury was due to downregulation of proinflammatory cytokines, rather than inhibition of platelet degranulation or COX-1 inhibition. In summary, we have identified a 2-signal requirement (Tlr9 and the Nalp3 inflammasome) for acetaminophen-induced hepatotoxicity and some potential therapeutic approaches.


Journal of Experimental Medicine | 2007

Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome

Fayyaz S. Sutterwala; Lilia A. Mijares; Li Li; Yasunori Ogura; Barbara I. Kazmierczak; Richard A. Flavell

Pseudomonas aeruginosa is a Gram-negative bacterium that causes opportunistic infections in immunocompromised individuals. P. aeruginosa employs a type III secretion system to inject effector molecules into the cytoplasm of the host cell. This interaction with the host cell leads to inflammatory responses that eventually result in cell death. We show that infection of macrophages with P. aeruginosa results in activation of caspase-1 in an IPAF-dependent, but flagellin-independent, manner. Macrophages deficient in IPAF or caspase-1 were markedly resistant to P. aeruginosa–induced cell death and release of the proinflammatory cytokine interleukin (IL)-1β. A subset of P. aeruginosa isolates express the effector molecule exoenzyme U (ExoU), which we demonstrate is capable of inhibiting caspase-1–driven proinflammatory cytokine production. This study shows a key role for IPAF and capase-1 in innate immune responses to the pathogen P. aeruginosa, and also demonstrates that virulent ExoU-expressing strains of P. aeruginosa can circumvent this innate immune response.


Nature Immunology | 2005

Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

Yasmina Laouar; Fayyaz S. Sutterwala; Leonid Gorelik; Richard A. Flavell

Interferon-γ and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (TH1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-β (TGF-β) controlled TH1 differentiation through the regulation of interferon-γ produced by natural killer (NK) cells. Blockade of TGF-β signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-γ, responsible for TH1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-β signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-β in NK cells versus dendritic cells.


Journal of Immunology | 2010

Cutting Edge: Caspase-1 Independent IL-1β Production Is Critical for Host Resistance to Mycobacterium tuberculosis and Does Not Require TLR Signaling In Vivo

Katrin D. Mayer-Barber; Daniel L. Barber; Kevin Shenderov; Sandra White; Mark S. Wilson; Allen W. Cheever; David G. Kugler; Sara Hieny; Patricia Caspar; Gabriel Núñez; Dirk Schlueter; Richard A. Flavell; Fayyaz S. Sutterwala; Alan Sher

To investigate the respective contributions of TLR versus IL-1R mediated signals in MyD88 dependent control of Mycobacterium tuberculosis, we compared the outcome of M. tuberculosis infection in MyD88, TRIF/MyD88, IL-1R1, and IL-1β–deficient mice. All four strains displayed acute mortality with highly increased pulmonary bacterial burden suggesting a major role for IL-1β signaling in determining the MyD88 dependent phenotype. Unexpectedly, the infected MyD88 and TRIF/MyD88-deficient mice, rather than being defective in IL-1β expression, displayed increased cytokine levels relative to wild-type animals. Similarly, infected mice deficient in caspase-1 and ASC, which have critical functions in inflammasome-mediated IL-1β maturation, showed unimpaired IL-1β production and importantly, were considerably less susceptible to infection than IL-1β deficient mice. Together our findings reveal a major role for IL-1β in host resistance to M. tuberculosis and indicate that during this infection the cytokine can be generated by a mechanism that does not require TLR signaling or caspase-1.


Journal of Experimental Medicine | 2006

Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis

Maria Lara-Tejero; Fayyaz S. Sutterwala; Yasunori Ogura; Ethan P. Grant; John Bertin; Anthony J. Coyle; Richard A. Flavell; Jorge E. Galán

Caspase-1 is activated by a variety of stimuli after the assembly of the “inflammasome,” an activating platform made up of a complex of the NOD-LRR family of proteins. Caspase-1 is required for the secretion of proinflammatory cytokines, such as interleukin (IL)-1β and IL-18, and is involved in the control of many bacterial infections. Paradoxically, however, its absence has been reported to confer resistance to oral infection by Salmonella typhimurium. We show here that absence of caspase-1 or components of the inflammasome does not result in resistance to oral infection by S. typhimurium, but rather, leads to increased susceptibility to infection.


Journal of Immunology | 2009

Cutting Edge: Candida albicans Hyphae Formation Triggers Activation of the Nlrp3 Inflammasome

Sophie Joly; Ning Ma; Jeffrey J. Sadler; David R. Soll; Suzanne L. Cassel; Fayyaz S. Sutterwala

The proinflammatory cytokine IL-1β plays an important role in antifungal immunity; however, the mechanisms by which fungal pathogens trigger IL-1β secretion are unclear. In this study we show that infection with Candida albicans is sensed by the Nlrp3 inflammasome, resulting in the subsequent release of IL-1β. The ability of C. albicans to switch from a unicellular yeast form into a filamentous form is essential for activation of the Nlrp3 inflammasome, as C. albicans mutants incapable of forming hyphae were defective in their ability to induce macrophage IL- 1β secretion. Nlrp3-deficient mice also demonstrated increased susceptibility to infection with C. albicans, which is consistent with a key role for Nlrp3 in innate immune responses to the pathogen C. albicans.


Annals of the New York Academy of Sciences | 2014

Mechanism of NLRP3 inflammasome activation.

Fayyaz S. Sutterwala; Stefanie Haasken; Suzanne L. Cassel

Inflammasomes continue to generate interest in an increasing number of disciplines owing to their unique ability to integrate a myriad of signals from pathogen‐ and damage‐associated molecular patterns into a proinflammatory response. This potent caspase‐1–dependent process is capable of activating the innate immune system, initiating pyroptosis (an inflammatory form of programmed cell death), and shaping adaptive immunity. The NLRP3 inflammasome is the most thoroughly studied of the inflammasome complexes that have been described thus far, perhaps owing to its disparate assortment of agonists. This review highlights our current understanding of the mechanisms of both priming and activation of the NLRP3 inflammasome.

Collaboration


Dive into the Fayyaz S. Sutterwala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey J. Sadler

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge