Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicia Troncoso is active.

Publication


Featured researches published by Alicia Troncoso.


IEEE Transactions on Knowledge and Data Engineering | 2011

Energy Time Series Forecasting Based on Pattern Sequence Similarity

Francisco Martinez Alvarez; Alicia Troncoso; José C. Riquelme; Jesús S. Aguilar–Ruiz

This paper presents a new approach to forecast the behavior of time series based on similarity of pattern sequences. First, clustering techniques are used with the aim of grouping and labeling the samples from a data set. Thus, the prediction of a data point is provided as follows: first, the pattern sequence prior to the day to be predicted is extracted. Then, this sequence is searched in the historical data and the prediction is calculated by averaging all the samples immediately after the matched sequence. The main novelty is that only the labels associated with each pattern are considered to forecast the future behavior of the time series, avoiding the use of real values of the time series until the last step of the prediction process. Results from several energy time series are reported and the performance of the proposed method is compared to that of recently published techniques showing a remarkable improvement in the prediction.


Expert Systems With Applications | 2010

Pattern recognition to forecast seismic time series

Antonio Morales-Esteban; Francisco Martínez-Álvarez; Alicia Troncoso; J.L. Justo; Cristina Rubio-Escudero

Earthquakes arrive without previous warning and can destroy a whole city in a few seconds, causing numerous deaths and economical losses. Nowadays, a great effort is being made to develop techniques that forecast these unpredictable natural disasters in order to take precautionary measures. In this paper, clustering techniques are used to obtain patterns which model the behavior of seismic temporal data and can help to predict medium-large earthquakes. First, earthquakes are classified into different groups and the optimal number of groups, a priori unknown, is determined. Then, patterns are discovered when medium-large earthquakes happen. Results from the Spanish seismic temporal data provided by the Spanish Geographical Institute and non-parametric statistical tests are presented and discussed, showing a remarkable performance and the significance of the obtained results.


Computer-Aided Engineering | 2010

Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution

María Martínez-Ballesteros; Alicia Troncoso; Francisco Martínez-Álvarez; José C. Riquelme

This research presents the mining of quantitative association rules based on evolutionary computation techniques. First, a real-coded genetic algorithm that extends the well-known binary-coded CHC algorithm has been projected to determine the intervals that define the rules without needing to discretize the attributes. The proposed algorithm is evaluated in synthetic datasets under different levels of noise in order to test its performance and the reported results are then compared to that of a multi-objective differential evolution algorithm, recently published. Furthermore, rules from real-world time series such as temperature, humidity, wind speed and direction of the wind, ozone, nitrogen monoxide and sulfur dioxide have been discovered with the objective of finding all existing relations between atmospheric pollution and climatological conditions.


Biodata Mining | 2011

Biclustering of Gene Expression Data by Correlation-Based Scatter Search

Juan A. Nepomuceno; Alicia Troncoso; Jesús S. Aguilar-Ruiz

BackgroundThe analysis of data generated by microarray technology is very useful to understand how the genetic information becomes functional gene products. Biclustering algorithms can determine a group of genes which are co-expressed under a set of experimental conditions. Recently, new biclustering methods based on metaheuristics have been proposed. Most of them use the Mean Squared Residue as merit function but interesting and relevant patterns from a biological point of view such as shifting and scaling patterns may not be detected using this measure. However, it is important to discover this type of patterns since commonly the genes can present a similar behavior although their expression levels vary in different ranges or magnitudes.MethodsScatter Search is an evolutionary technique that is based on the evolution of a small set of solutions which are chosen according to quality and diversity criteria. This paper presents a Scatter Search with the aim of finding biclusters from gene expression data. In this algorithm the proposed fitness function is based on the linear correlation among genes to detect shifting and scaling patterns from genes and an improvement method is included in order to select just positively correlated genes.ResultsThe proposed algorithm has been tested with three real data sets such as Yeast Cell Cycle dataset, human B-cells lymphoma dataset and Yeast Stress dataset, finding a remarkable number of biclusters with shifting and scaling patterns. In addition, the performance of the proposed method and fitness function are compared to that of CC, OPSM, ISA, BiMax, xMotifs and Samba using Gene the Ontology Database.


soft computing | 2011

An evolutionary algorithm to discover quantitative association rules in multidimensional time series

María Martínez-Ballesteros; Francisco Martínez-Álvarez; Alicia Troncoso; José C. Riquelme

An evolutionary approach for finding existing relationships among several variables of a multidimensional time series is presented in this work. The proposed model to discover these relationships is based on quantitative association rules. This algorithm, called QARGA (Quantitative Association Rules by Genetic Algorithm), uses a particular codification of the individuals that allows solving two basic problems. First, it does not perform a previous attribute discretization and, second, it is not necessary to set which variables belong to the antecedent or consequent. Therefore, it may discover all underlying dependencies among different variables. To evaluate the proposed algorithm three experiments have been carried out. As initial step, several public datasets have been analyzed with the purpose of comparing with other existing evolutionary approaches. Also, the algorithm has been applied to synthetic time series (where the relationships are known) to analyze its potential for discovering rules in time series. Finally, a real-world multidimensional time series composed by several climatological variables has been considered. All the results show a remarkable performance of QARGA.


international symposium on neural networks | 2013

Combining pattern sequence similarity with neural networks for forecasting electricity demand time series

Irena Koprinska; Mashud Rana; Alicia Troncoso; Francisco Martínez-Álvarez

We present PSF-NN, a new approach for time series forecasting. It combines prediction based on sequence similarity with neural networks. PSF-NN first generates predictions using the PSF algorithm that are then refined by the neural network component, which also utilizes additional features. We evaluate the performance of PSF-NN using a time series of hourly electricity demands for the state of New South Wales in Australia for three years. The task is to predict an interval of future values simultaneously, i.e. the 24 demands for the next day, instead of predicting just a single future demand. The results showed that the combined PSF-NN approach provides accurate predictions, outperforming the original PSF algorithm and a number of baselines.


intelligent data engineering and automated learning | 2007

Partitioning-clustering techniques applied to the electricity price time series

Francisco Martínez-Álvarez; Alicia Troncoso; José C. Riquelme; J.M. Riquelme

Clustering is used to generate groupings of data from a large dataset, with the intention of representing the behavior of a system as accurately as possible. In this sense, clustering is applied in this work to extract useful information from the electricity price time series. To be precise, two clustering techniques, K-means and Expectation Maximization, have been utilized for the analysis of the prices curve, demonstrating that the application of these techniques is effective so to split the whole year into different groups of days, according to their prices conduct. Later, this information will be used to predict the price in the short time period. The prices exhibited a remarkable resemblance among days embedded in a same season and can be split into two major kind of clusters: working days and festivities.


Neurocomputing | 2015

A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables

Jorge García-Gutiérrez; Francisco Martínez-Álvarez; Alicia Troncoso; José C. Riquelme

Light Detection and Ranging (LiDAR) is a remote sensor able to extract three-dimensional information. Environmental models in forest areas have been benefited by the use of LiDAR-derived information in the last years. A multiple linear regression (MLR) with previous stepwise feature selection is the most common method in the literature to develop those models. MLR defines the relation between the set of field measurements and the statistics extracted from a LiDAR flight. Machine learning has emerged as a suitable tool to improve classic stepwise MLR results on LiDAR. Unfortunately, few studies have been proposed to compare the quality of the multiple machine learning approaches. This paper presents a comparison between the classic MLR-based methodology and regression techniques in machine learning (neural networks, support vector machines, nearest neighbour, ensembles such as random forests) with special emphasis on regression trees. The selected techniques are applied to real LiDAR data from two areas in the province of Lugo (Galizia, Spain). The results confirm that classic MLR is outperformed by machine learning techniques and concretely, our experiments suggest that Support Vector Regression with Gaussian kernels statistically outperforms the rest of the techniques.


international conference on data mining | 2008

LBF: A Labeled-Based Forecasting Algorithm and Its Application to Electricity Price Time Series

Francisco Martínez-Álvarez; Alicia Troncoso; José C. Riquelme; Jesús S. Aguilar-Ruiz

A new approach is presented in this work with the aim of predicting time series behaviors. A previous labeling of the samples is obtained utilizing clustering techniques and the forecasting is applied using the information provided by the clustering. Thus, the whole data set is discretized with the labels assigned to each data point and the main novelty is that only these labels are used to predict the future behavior of the time series, avoiding using the real values of the time series until the process ends. The results returned by the algorithm, however, are not labels but the nominal value of the point that is required to be predicted. The algorithm based on labeled (LBF) has been tested in several energy-related time series and a notable improvement in the prediction has been achieved.


hybrid artificial intelligence systems | 2011

Computational intelligence techniques for predicting earthquakes

Francisco Martínez-Álvarez; Alicia Troncoso; Antonio Morales-Esteban; José C. Riquelme

Nowadays, much effort is being devoted to develop techniques that forecast natural disasters in order to take precautionary measures. In this paper, the extraction of quantitative association rules and regression techniques are used to discover patterns which model the behavior of seismic temporal data to help in earthquakes prediction. Thus, a simple method based on the k-smallest and k-greatest values is introduced for mining rules that attempt at explaining the conditions under which an earthquake may happen. On the other hand patterns are discovered by using a tree-based piecewise linear model. Results from seismic temporal data provided by the Spanishs Geographical Institute are presented and discussed, showing a remarkable performance and the significance of the obtained results.

Collaboration


Dive into the Alicia Troncoso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José F. Torres

Pablo de Olavide University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge