Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alicja J. Copik is active.

Publication


Featured researches published by Alicja J. Copik.


Biochemistry | 2005

EPR and X-ray Crystallographic Characterization of the Product-Bound Form of the Mn II -Loaded Methionyl Aminopeptidase from Pyrococcus furiosus

Alicja J. Copik; Boguslaw Nocek; Sabina I. Swierczek; Shane S. Ruebush; Se Bok Jang; Lu Meng; Ventris M. D'Souza; John W. Peters; Brian Bennett; Richard C. Holz

Methionine aminopeptidases (MetAPs) are ubiquitous metallohydrolases that remove the N-terminal methionine from nascent polypeptide chains. Although various crystal structures of MetAP in the presence of inhibitors have been solved, the structural aspects of the product-bound step has received little attention. Both perpendicular- and parallel-mode electron paramagnetic resonance (EPR) spectra were recorded for the Mn(II)-loaded forms of the type-I (Escherichia coli) and type-II (Pyrococcus furiosus) MetAPs in the presence of the reaction product l-methionine (L-Met). In general, similar EPR features were observed for both [MnMn(EcMetAP-I)]-L-Met and [MnMn(PfMetAP-II)]-L-Met. The observed perpendicular-mode EPR spectra consisted of a six-line hyperfine pattern at g = 2.03 (A = 8.8 mT) with less intense signals with eleven-line splitting at g = 2.4 and 1.7 (A = 4.4 mT). The former feature results from mononuclear, magnetically isolated Mn(II) ions and this signal are 3-fold more intense in the [MnMn(PfMetAP-II)]-L-Met EPR spectrum than in the [MnMn(EcMetAP-I)]-L-Met spectrum. Inspection of the EPR spectra of both [MnMn(EcMetAP-I)]-L-Met and [MnMn(PfMetAP-II)]-L-Met at 40 K in the parallel mode reveals that the [Mn(EcMetAP-I)]-L-Met spectrum exhibits a well-resolved hyperfine split pattern at g = 7.6 with a hyperfine splitting constant of A = 4.4 mT. These data suggest the presence of a magnetically coupled dinuclear Mn(II) center. On the other hand, a similar feature was not observed for the [MnMn(PfMetAP-II)]-L-Met complex. Therefore, the EPR data suggest that L-Met binds to [MnMn(EcMetAP-I)] differently than [MnMn(PfMetAP-II)]. To confirm these data, the X-ray crystal structure of [MnMn(PfMetAP-II)]-L-Met was solved to 2.3 A resolution. Both Mn1 and Mn2 reside in a distorted trigonal bipyramidal geometry, but the bridging water molecule, observed in the [CoCo(PfMetAP-II)] structure, is absent. Therefore, L-Met binding displaces this water molecule, but the carboxylate oxygen atom of L-Met does not bridge between the two Mn(II) ions. Instead, a single carboxylate oxygen atom of L-Met interacts with only Mn1, while the N-terminal amine nitrogen atom binds to M2. This L-Met binding mode is different from that observed for L-Met binding [CoCo(EcMetAP-I)]. Therefore, the catalytic mechanisms of type-I MetAPs may differ somewhat from type-II enzymes when a dinuclear metalloactive site is present.


Oncogene | 2014

LIM domain kinases as potential therapeutic targets for neurofibromatosis type 2

Alejandra M. Petrilli; Alicja J. Copik; Posadas M; Long-Sheng Chang; Welling Db; Giovannini M; Cristina Fernandez-Valle

Neurofibromatosis type 2 (NF2) is caused by mutations in the NF2 gene that encodes a tumor-suppressor protein called merlin. NF2 is characterized by formation of multiple schwannomas, meningiomas and ependymomas. Merlin loss-of-function is associated with increased activity of Rac and p21-activated kinases (PAKs) and deregulation of cytoskeletal organization. LIM domain kinases (LIMK1 and 2) are substrate for Cdc42/Rac-PAK and modulate actin dynamics by phosphorylating cofilin at serine-3. This modification inactivates the actin severing and depolymerizing activity of cofilin. LIMKs also translocate into the nucleus and regulate cell cycle progression. Significantly, LIMKs are overexpressed in several tumor types, including skin, breast, lung, liver and prostate. Here we report that mouse Schwann cells (MSCs) in which merlin function is lost as a result of Nf2 exon2 deletion (Nf2ΔEx2) exhibited increased levels of LIMK1, LIMK2 and active phospho-Thr508/505-LIMK1/2, as well as phospho-Ser3-cofilin, compared with wild-type normal MSCs. Similarly, levels of LIMK1 and 2 total protein and active phosphorylated forms were elevated in human vestibular schwannomas compared with normal human Schwann cells (SCs). Reintroduction of wild-type NF2 into Nf2ΔEx2 MSC reduced LIMK1 and LIMK2 levels. We show that pharmacological inhibition of LIMK with BMS-5 decreased the viability of Nf2ΔEx2 MSCs in a dose-dependent manner, but did not affect viability of control MSCs. Similarly, LIMK knockdown decreased viability of Nf2ΔEx2 MSCs. The decreased viability of Nf2ΔEx2 MSCs was not due to caspase-dependent or -independent apoptosis, but rather due to inhibition of cell cycle progression as evidenced by accumulation of cells in G2/M phase. Inhibition of LIMKs arrests cells in early mitosis by decreasing aurora A activation. Our results suggest that LIMKs are potential drug targets for NF2 and tumors associated with merlin deficiency.


Molecular Pharmacology | 2009

Facilitatory interplay in α1A and β2 adrenoceptor function reveals a non-Gq signaling mode: implications for diversification of intracellular signal transduction

Alicja J. Copik; Cynthia Ma; Alan Kosaka; Sunil Sahdeo; Andy Trane; Hoangdung Ho; Paul Shartzer Dietrich; Helen Yu; Anthony P. D. W. Ford; Donald Button; Marcos E. Milla

Agonist occupied α1-adrenoceptors (α1-ARs) engage several signaling pathways, including phosphatidylinositol hydrolysis, calcium mobilization, arachidonic acid release, mitogen-activated protein (MAP) kinase activation, and cAMP accumulation. The natural agonist norepinephrine (NE) activates with variable affinity and intrinsic efficacy all adrenoceptors, and in cells that coexpress α1- and β-AR subtypes, such as cardiomyocytes, this leads to coactivation of multiple downstream pathways. This may result in pathway cross-talk with significant consequences to heart physiology and pathologic state. To dissect signaling components involved specifically in α1A- and β2-AR signal interplay, we have developed a recombinant model system that mimics the levels of receptor expression observed in native cells. We followed intracellular Ca2+ mobilization to monitor in real time the activation of both Gq and Gs pathways. We found that coactivation of α1A- and β2-AR by the nonselective agonist NE or via a combination of the highly selective α1A-AR agonist A61603 and the β-selective agonist isoproterenol led to increases in Ca2+ influx from the extracellular compartment relative to stimulation with A61603 alone, with no effect on the associated transient release of Ca2+ from intracellular stores. This effect became more evident upon examination of an α1A-AR variant exhibiting a partial defect in coupling to Gq, and we attribute it to potentiation of a non Gq-pathway, uncovered by application of a combination of xestospongin C, an endoplasmic reticulum inositol 1,4,5-triphosphate receptor blocker, and 2-aminoethoxydiphenyl borate, a nonselective storeoperated Ca2+ entry channel blocker. We also found that stimulation with A61603 of a second α1A-AR variant entirely unable to signal induced no Ca2+ unless β2-AR was concomitantly activated. These results may be accounted for by the presence of α1A/β2-AR heterodimers or alternatively by specific adrenoceptor signal cross-talk resulting in distinct pharmacological behavior. Finally, our findings provide a new conceptual framework to rationalize outcomes from clinical studies targeting α- and β-adrenoceptors.


Cell Death and Disease | 2014

The CT20 peptide causes detachment and death of metastatic breast cancer cells by promoting mitochondrial aggregation and cytoskeletal disruption

Michael W. Lee; Rania Bassiouni; N A Sparrow; Ashley Iketani; Rebecca Boohaker; C Moskowitz; Priya Vishnubhotla; A S Khaled; Jeremiah Oyer; Alicja J. Copik; C Fernandez-Valle; Jesus Manuel Perez; Annette R. Khaled

Metastasis accounts for most deaths from breast cancer, driving the need for new therapeutics that can impede disease progression. Rationally designed peptides that take advantage of cancer-specific differences in cellular physiology are an emerging technology that offer promise as a treatment for metastatic breast cancer. We developed CT20p, a hydrophobic peptide based on the C terminus of Bax that exhibits similarities with antimicrobial peptides, and previously reported that CT20p has unique cytotoxic actions independent of full-length Bax. In this study, we identified the intracellular actions of CT20p which precede cancer cell-specific detachment and death. Previously, we found that CT20p migrated in the heavy membrane fractions of cancer cell lysates. Here, using MDA-MB-231 breast cancer cells, we demonstrated that CT20p localizes to the mitochondria, leading to fusion-like aggregation and mitochondrial membrane hyperpolarization. As a result, the distribution and movement of mitochondria in CT20p-treated MDA-MB-231 cells was markedly impaired, particularly in cell protrusions. In contrast, CT20p did not associate with the mitochondria of normal breast epithelial MCF-10A cells, causing little change in the mitochondrial membrane potential, morphology or localization. In MDA-MB-231 cells, CT20p triggered cell detachment that was preceded by decreased levels of α5β1 integrins and reduced F-actin polymerization. Using folate-targeted nanoparticles to encapsulate and deliver CT20p to murine tumors, we achieved significant tumor regression within days of peptide treatment. These results suggest that CT20p has application in the treatment of metastatic disease as a cancer-specific therapeutic peptide that perturbs mitochondrial morphology and movement ultimately culminating in disruption of the actin cytoskeleton, cell detachment, and loss of cell viability.


RSC Advances | 2015

Conducting polymer nanoparticles for targeted cancer therapy

Mona Doshi; Marissa Krienke; Saeid Khederzadeh; Henry Sanchez; Alicja J. Copik; Jeremiah Oyer; Andre J. Gesquiere

First and second generation photosensitizers used in photodynamic therapy (PDT) have shown promising results in clinical applications, aided by recent improvements in light absorption efficiency and quantum yield of singlet oxygen formation. However, these photosensitizers still have several drawbacks that prevent PDT from being an efficient therapy, including lack of selectivity to diseased tissue, observation of dark toxicity, and hydrophobicity of the sensitizer. Conducting polymers are promising candidates as next generation sensitizers for PDT due to their large extinction coefficients (>107 L mol−1 cm−1), ability to undergo intersystem crossing to the triplet state at high rates, and triplet energies that are close to that of oxygen. Targeting of conducting polymer poly[2-methoxy-5-(2-ethylhexyl-oxy)-p-phenylenevinylene] (MEH-PPV) nanoparticles to folate receptors (FR) was achieved by development of blended nanoparticles containing amphiphilic polymer polystyrene graft ethylene oxide functionalized with carboxylic acid (PS-PEG-COOH) with chemically active moieties that can be functionalized with folic acid. The resulting organic nanoparticles are buffer stable and exhibit excellent biocompatibility in the dark. The functionalized nanoparticles (FNPs) were studied in OVCAR3 (ovarian cancer cell line, FR+), MIA PaCa2 (pancreatic cell line, FR−), and A549 (lung cancer cell line, marginally FR+). Complete selectivity of the FNPs towards FR+ cell lines was found, and is attributed to the hydrophobicity and large negative zeta potential of the nanoparticles. Quantification of PDT results by MTS assays and flow cytometry show that PDT treatment was fully selective to the FR overexpressing cell line (OVCAR3). No cell mortality was observed for the other cell lines studied here within experimental error.


PLOS ONE | 2015

Isoproterenol Acts as a Biased Agonist of the Alpha-1A-Adrenoceptor that Selectively Activates the MAPK/ERK Pathway.

Alicja J. Copik; Aleksander Baldys; Khanh Nguyen; Sunil Sahdeo; Hoangdung Ho; Alan Kosaka; Paul J. Dietrich; Bill Fitch; John R. Raymond; Anthony P. D. W. Ford; Donald Button; Marcos E. Milla

The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK/ERK signaling cascade that is likely independent of coupling to Gαq.


Oncotarget | 2016

Anti-ovarian tumor response of donor peripheral blood mononuclear cells is due to infiltrating cytotoxic NK cells.

Veethika Pandey; Jeremiah Oyer; Robert Y. Igarashi; Sarah B. Gitto; Alicja J. Copik; Deborah A. Altomare

Treatment of ovarian cancer, a leading cause of gynecological malignancy, has good initial efficacy with surgery and platinum/taxane-based chemotherapy, but poor long-term survival in patients. Inferior long-term prognosis is attributed to intraperitoneal spreading, relapse and ineffective alternate therapies. Adoptive cell therapy is promising for tumor remission, although logistical concerns impede widespread implementation. In this study, healthy PBMCs were used to examine the immune response in a mouse model with human ovarian cancer, where natural killer (NK) cells were found to be the effector cells that elicited an anti-tumor response. Presence of tumor was found to stimulate NK cell expansion in mice treated intraperitoneally with PBMC+Interleukin-2 (IL-2), as compared to no expansion in non-tumor-bearing mice given the same treatment. PBMC+IL-2 treated mice exhibiting NK cell expansion had complete tumor remission. To validate NK cell mediated anti-tumor response, the intratumoral presence of NK cells and their cytotoxicity was confirmed by immunohistochemistry and granzyme activity of NK cells recovered from the tumor. Collectively, this study highlights the significance of NK cell-cytotoxic response to tumor, which may be attributed to interacting immune cell types in the PBMC population, as opposed to clinically used isolated NK cells showing lack of anti-tumor efficacy in ovarian cancer patients.


Organic and Biomolecular Chemistry | 2013

Visible-light activatable organic CO-releasing molecules (PhotoCORMs) that simultaneously generate fluorophores.

Ping Peng; Chaoming Wang; Zheng Shi; Valentine K. Johns; Liyuan Ma; Jeremiah Oyer; Alicja J. Copik; Robert Y. Igarashi; Yi Liao


Biochemistry | 2002

Overexpression and Divalent Metal Binding Properties of the Methionyl Aminopeptidase from Pyrococcus furiosus

Lu Meng; Shane Ruebush; Ventris M. D'Souza; Alicja J. Copik; Susumu Tsunasawa; Richard C. Holz


Biochemistry | 2002

Kinetic and Structural Characterization of Manganese(II)-Loaded Methionyl Aminopeptidases†

Ventris M. D'Souza; Sabina I. Swierczek; Nathaniel J. Cosper; Lu Meng; Shane Ruebush; Alicja J. Copik; Robert A. Scott; Richard C. Holz

Collaboration


Dive into the Alicja J. Copik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremiah Oyer

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Meng

Utah State University

View shared research outputs
Top Co-Authors

Avatar

Marcos E. Milla

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sunil Sahdeo

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge