Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald Button is active.

Publication


Featured researches published by Donald Button.


ChemMedChem | 2009

Small-Molecule Inhibitors of Store-Operated Calcium Entry

Zachary Kevin Sweeney; Ana Elena Minatti; Donald Button; Silvia Patrick

Molecules that inhibit store‐operated calcium entry (SOCE) are potentially useful immunomodulating agents. The identification of proteins involved in this pathway may further enable the identification of selective inhibitors. Herein we document some examples of the small‐molecule inhibitors of SOCE that have been reported to date. We also describe methods that were used to characterize the mechanism of action of these inhibitors.


European Neuropsychopharmacology | 2009

Involvement of the neurotensin receptor 1 in the behavioral effects of two neurotensin agonists, NT-2 and NT69L: lack of hypothermic, antinociceptive and antipsychotic actions in receptor knockout mice.

Jordan A. Mechanic; Janette E. Sutton; Amy Berson; Xiaosu Wu; Joyce Kwan; Rudy Schreiber; Zhen Pang; Donald Button

Neurotensin (NT) is a neuropeptide implicated in the pathophysiology of schizophrenia and in mediating the efficacy of antipsychotic drugs. NT is also involved in the regulation of body temperature and pain sensitivity. Using neurotensin receptor 1 (NTR1) knockout (KO) and wild-type (WT) mice, these studies evaluated the involvement of NTR1 in the behavioral responses produced by peripheral administration of NT agonists (NT-2 and NT69L). Animals were characterized in paradigms designed to assess hypothermia, antinociception, and antipsychotic-like effects. Under basal conditions, there were no phenotypic differences between NTR1 KO and WT mice. In WT mice, both NTR1 agonists decreased core body temperature (active doses in mg/kg, i.p., for NT-2 and NT69L, respectively: 1 and 3), increased tail withdrawal latencies (1 and 3), produced decreased spontaneous climbing (0.1, 0.3, 1 and 1, 3, 10) and reversed apomorphine-induced climbing (0.3, 1 and 1, 3). In contrast, none of the effects of either agonist were present in KO mice. These results suggest that NTR1: (1) does not play a major role in the control of basal thermoregulation, nociception or psychomotor stimulation in mice (barring possible developmental plasticity), (2) does mediate these behavioral responses to NT agonists, and (3) may play a role in the potential antipsychotic effects of these agonists.


Neuropharmacology | 2010

Sensorimotor gating in neurotensin-1 receptor null mice

David Feifel; Zhen Pang; Paul D. Shilling; Gilia Melendez; Rudy Schreiber; Donald Button

BACKGROUND Converging evidence has implicated endogenous neurotensin (NT) in the pathophysiology of brain processes relevant to schizophrenia. Prepulse inhibition of the startle reflex (PPI) is a measure of sensorimotor gating and considered to be of strong relevance to neuropsychiatric disorders associated with psychosis and cognitive dysfunction. Mice genetically engineered to not express NT display deficits in PPI that model the PPI deficits seen in schizophrenia patients. NT1 receptors have been most strongly implicated in mediating the psychosis relevant effects of NT such as attenuating PPI deficits. To investigate the role of NT1 receptors in the regulation of PPI, we measured baseline PPI in wildtype (WT) and NT1 knockout (KO) mice. We also tested the effects of amphetamine and dizocilpine, a dopamine agonist and NMDA antagonist, respectively, that reduce PPI as well as the NT1 selective receptor agonist PD149163, known to increase PPI in rats. METHODS Baseline PPI and acoustic startle response were measured in WT and NT1 KO mice. After baseline testing, mice were tested again after receiving intraperatoneal (IP) saline or one of three doses of amphetamine (1.0, 3.0 and 10.0 mg/kg), dizocilpine (0.3, 1.0 and 3.0 mg/kg) and PD149163 (0.5, 2.0 and 6.0 mg/kg) on separate test days. RESULTS Baseline PPI and acoustic startle response in NT1 KO mice were not significantly different from NT1 WT mice. WT and KO mice exhibited similar responses to the PPI-disrupting effects of dizocilpine and amphetamine. PD149163 significantly facilitated PPI (P < 0.004) and decreased the acoustic startle response (P < 0.001) in WT but not NT1 KO mice. CONCLUSIONS The data does not support the regulation of baseline PPI or the PPI disruptive effects of amphetamine or dizocilpine by endogenous NT acting at the NT1 receptor, although they support the antipsychotic potential of pharmacological activation of NT1 receptors by NT1 agonists.


Molecular Pharmacology | 2009

Facilitatory interplay in α1A and β2 adrenoceptor function reveals a non-Gq signaling mode: implications for diversification of intracellular signal transduction

Alicja J. Copik; Cynthia Ma; Alan Kosaka; Sunil Sahdeo; Andy Trane; Hoangdung Ho; Paul Shartzer Dietrich; Helen Yu; Anthony P. D. W. Ford; Donald Button; Marcos E. Milla

Agonist occupied α1-adrenoceptors (α1-ARs) engage several signaling pathways, including phosphatidylinositol hydrolysis, calcium mobilization, arachidonic acid release, mitogen-activated protein (MAP) kinase activation, and cAMP accumulation. The natural agonist norepinephrine (NE) activates with variable affinity and intrinsic efficacy all adrenoceptors, and in cells that coexpress α1- and β-AR subtypes, such as cardiomyocytes, this leads to coactivation of multiple downstream pathways. This may result in pathway cross-talk with significant consequences to heart physiology and pathologic state. To dissect signaling components involved specifically in α1A- and β2-AR signal interplay, we have developed a recombinant model system that mimics the levels of receptor expression observed in native cells. We followed intracellular Ca2+ mobilization to monitor in real time the activation of both Gq and Gs pathways. We found that coactivation of α1A- and β2-AR by the nonselective agonist NE or via a combination of the highly selective α1A-AR agonist A61603 and the β-selective agonist isoproterenol led to increases in Ca2+ influx from the extracellular compartment relative to stimulation with A61603 alone, with no effect on the associated transient release of Ca2+ from intracellular stores. This effect became more evident upon examination of an α1A-AR variant exhibiting a partial defect in coupling to Gq, and we attribute it to potentiation of a non Gq-pathway, uncovered by application of a combination of xestospongin C, an endoplasmic reticulum inositol 1,4,5-triphosphate receptor blocker, and 2-aminoethoxydiphenyl borate, a nonselective storeoperated Ca2+ entry channel blocker. We also found that stimulation with A61603 of a second α1A-AR variant entirely unable to signal induced no Ca2+ unless β2-AR was concomitantly activated. These results may be accounted for by the presence of α1A/β2-AR heterodimers or alternatively by specific adrenoceptor signal cross-talk resulting in distinct pharmacological behavior. Finally, our findings provide a new conceptual framework to rationalize outcomes from clinical studies targeting α- and β-adrenoceptors.


Experimental and Toxicologic Pathology | 2010

Mechanism of subendocardial cell proliferation in the rat and relevance for understanding drug-induced valvular heart disease in humans

Mark R. Fielden; Mary Hassani; Hirdesh Uppal; Patricia Ann Day-Lollini; Donald Button; Renee Sharon Martin; Rosario Garrido; Xingrong Liu; Kyle L. Kolaja

A number of drugs and drug candidates, including fenfluramine and ergot derivatives, are associated with valvulopathy in humans; however, these responses are poorly predicted from animal studies. In vitro and in vivo evidence suggests that these compounds exert their pathological effect through activation of serotonin 2B receptor (5HT2BR) signaling. However, the variable effect of fenfluramine and other 5HT2BR agonists in rodents has cast doubt on the relevance of animal findings to predicting human risk. Herein, a candidate compound, RO3013, induced subendocardial cell proliferation in the mitral and tricuspid valves in rats after only 3 days of daily dosing. Additionally, there was a treatment-related increase in immunostaining of the proliferation marker Ki67, and phosphorylated Smad3 in the heart indicative of TGFβ signaling co-localized with 5HT2BR expression. To substantiate the hypothesis that RO3013-induced valvular proliferation is secondary to 5HT2BR activation, the compound was evaluated in vitro and found to bind to the human 5HT2BR with a K(i) of 3.8μM; however, it was virtually devoid of agonist activity in a functional assay in human cells. By contrast, RO3013 bound to the rat 5HT2BR with a K(i) of 1.2μM and activated the receptor with an EC50 of 0.5μM. This agonist potency estimate is in good agreement with the free plasma concentrations of RO3013 at which valvular proliferation was observed. These results suggest that the rat may be susceptible to 5HT2BR-mediated valvular proliferation similar to humans; yet, the significant differences between binding and functional activities can be a possible explanation for the observed species-selective receptor responses.


PLOS ONE | 2015

Isoproterenol Acts as a Biased Agonist of the Alpha-1A-Adrenoceptor that Selectively Activates the MAPK/ERK Pathway.

Alicja J. Copik; Aleksander Baldys; Khanh Nguyen; Sunil Sahdeo; Hoangdung Ho; Alan Kosaka; Paul J. Dietrich; Bill Fitch; John R. Raymond; Anthony P. D. W. Ford; Donald Button; Marcos E. Milla

The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK/ERK signaling cascade that is likely independent of coupling to Gαq.


Behavioural Brain Research | 2009

The neurotensin agonist NT69L improves sensorimotor gating deficits in rats induced by a glutamatergic antagonist, but not by dopaminergic agonists

Rob L. Secchi; E. Sung; Linda Hedley; Donald Button; Rudy Schreiber

An imbalance between different neurotransmitter systems is involved in the pathophysiological processes underlying schizophrenia. Since the neurotensin (NT) system modulates the activity of several of these neurotransmitters, drugs acting upon the NT system may act as novel antipsychotic drugs. This hypothesis is supported by studies with NT in animal models. For example, intracranial injection of NT improves sensorimotor gating in rats [Feifel D, Minor KL, Dulawa S, Swerdlow NR. The effects of intra-accumbens neurotensin on sensorimotor gating. Brain Research 1997;760:80-4]. NT-mimetics, such as NT69L, have been developed which are more resistant to enzymatic degradation than the native NT peptide. In the present study, the potential antipsychotic properties of NT69L were evaluated in a rat pre-pulse inhibition (PPI) paradigm. PPI is a measure of sensorimotor gating where a weak auditory stimulus, or pre-pulse, inhibits the startle response to a strong stimulus, or pulse. Schizophrenic patients exhibit deficits in their PPI response. This condition can be mimicked in rats with psychotomimetic drugs and the resulting PPI deficit is reversed by antipsychotic drugs. NT69L (0.1-10mg/kg i.p.) reversed disruptions of the PPI response induced by the NMDA antagonist dizocilpine (0.1mg/kg s.c.) for at least 1-h post-injection, but did not reverse disruptions induced by the dopaminergic agonists apomorphine and d-amphetamine (0.5 and 5mg/kg s.c., respectively). These results confirm that NT69L possesses antipsychotic-like activity and therefore could be beneficial in the treatment of schizophrenia.


Behavioural Brain Research | 2010

Effects of Neurotensin-2 Receptor Deletion on Sensorimotor Gating and Locomotor Activity

David Feifel; Zheng Pang; Paul D. Shilling; Gilia Melendez; Rudy Schreiber; Donald Button

Endogenous neurotensin (NT) has been implicated in brain processes relevant to schizophrenia as well as the therapeutic effects of antipsychotic drugs (APDs) used to treat this disorder. Converging evidence suggests that NT1 receptors mediate the antipsychotic-like effects of NT, such as prepulse inhibition (PPI) elevation. However, the role of NT2 receptors in these effects is not known. To investigate the contribution of NT2 receptors to the regulation of PPI, we measured baseline PPI and acoustic startle response (ASR), in male and female wild type (WT) and NT2 knockout (KO) mice. For comparison, we also measured locomotor activity. Baseline PPI was significantly elevated in both male (P<0.01) and female (P<0.01) NT2 KO compared to WT mice, while ASR was significantly decreased in KO mice of both genders (P<0.01). In contrast, female but not male KO mice exhibited significantly less baseline ambulations (P<0.05). These data support the regulation of baseline PPI, ASR and locomotor activity by endogenous NT acting at the NT2 receptor. Further studies investigating the role of NT2 receptors in the modulation of APD-like effects are warranted.


Toxicological Sciences | 2018

Transient changes in hepatic physiology that alter bilirubin and bile acid transport may explain elevations in liver chemistries observed in clinical trials of GGF2 (Cimaglermin Alfa)

Merrie Mosedale; Donald Button; Jonathan P. Jackson; Kimberly M. Freeman; Kenneth R. Brouwer; Anthony O. Caggiano; Andrew Eisen; Jennifer Iaci; Tom J. Parry; Ric Stanulis; Maya Srinivas; Paul B. Watkins

GGF2 is a recombinant human neuregulin-1β in development for chronic heart failure. Phase 1 clinical trials of GGF2 were put on hold when transient elevations in serum aminotransferases and total bilirubin were observed in 2 of 43 subjects who received single doses of GGF2 at 1.5 or 0.378 mg/kg. However, aminotransferase elevations were modest and not typical of liver injury sufficient to result in elevated serum bilirubin. Cynomolgus monkeys administered a single 15 mg/kg dose of GGF2 had similar transient elevations in serum aminotransferases and bilirubin as well as transient elevations in serum bile acids. However, no hepatocellular necrosis was observed in liver biopsies obtained during peak elevations. When sandwich-cultured human hepatocytes were treated with GGF2 for up to 72 h at concentrations approximately 0.8-fold average plasma Cmax for the 0.378 mg/kg dose, no cytotoxicity was observed. Gene expression profiling identified approximately 50% reductions in mRNAs coding for bilirubin transporters and bile acid conjugating enzymes, as well as changes in expression of additional genes mimicking the interleukin-6-mediated acute phase response. Similar gene expression changes were observed in GGF2-treated HepG2 cells and primary monkey hepatocytes. Additional studies conducted in sandwich-cultured human hepatocytes revealed a transient and GGF2 concentration-dependent decrease in hepatocyte bile acid content and biliary clearance of taurocholate without affecting biliary taurocholate efflux. Taken together, these data suggest that GGF2 does not cause significant hepatocellular death, but transiently modifies hepatic handling of bilirubin and bile acids, effects that may account for the elevations in serum bilirubin observed in the clinical trial subjects.


Scientific Reports | 2018

Human IgM antibody rHIgM22 promotes phagocytic clearance of myelin debris by microglia

Yana Zorina; Jason Stricker; Anthony O. Caggiano; Donald Button

In multiple sclerosis (MS), demyelinated CNS lesions fail to sufficiently remyelinate, despite the presence of oligodendrocyte precursor cells (OPCs) capable of differentiating into mature oligodendrocytes. MS lesions contain damaged myelin debris that can inhibit OPC maturation and hinder repair. rHIgM22 is an experimental human recombinant IgM antibody that promotes remyelination in animal models and is being examined in patients with MS. rHIgM22 binds to CNS myelin and partially rescues OPC process outgrowth on myelin. Since rHIgM22 does not affect OPC process outgrowth in vitro on permissive substrate, we examined the possibility that it acts by enhancing phagocytic clearance of myelin debris by microglia. In this study, we tested if rHIgM22 binding could tag myelin for microglial phagocytosis. A mouse microglial cell line and primary rat microglia were treated with myelin and rHIgM22 and assayed for myelin phagocytosis. We found that: 1) rHIgM22 stimulates myelin phagocytosis in a dose-dependent manner; 2) rHIgM22-mediated myelin phagocytosis requires actin polymerization; and 3) rHIgM22-stimulation of myelin phagocytosis requires activity of rHIgM22 Fc domain and activation of Complement Receptor 3. Since myelin inhibits OPC differentiation, stimulation of phagocytic clearance of damaged myelin may be an important means by which rHIgM22 promotes remyelination.

Collaboration


Dive into the Donald Button's collaboration.

Top Co-Authors

Avatar

Marcos E. Milla

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunil Sahdeo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicja J. Copik

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Feifel

University of California

View shared research outputs
Top Co-Authors

Avatar

Gilia Melendez

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge