Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alina C. Boesteanu is active.

Publication


Featured researches published by Alina C. Boesteanu.


Nature Immunology | 2001

Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide.

Martha S. Jordan; Alina C. Boesteanu; Amy J. Reed; Andria L. Petrone; Andrea E. Holenbeck; Melissa A. Lerman; Ali Naji; Andrew J. Caton

Despite accumulating evidence that regulatory T cells play a crucial role in preventing autoimmunity, the processes underlying their generation during immune repertoire formation are unknown. We show here that interactions with a single self-peptide can induce thymocytes that bear an autoreactive T cell receptor (TCR) to undergo selection to become CD4+CD25+ regulatory T cells. Selection of CD4+CD25+ thymocytes appears to require a TCR with high affinity for a self peptide because thymocytes that bear TCRs with low affinity do not undergo selection into this pathway. Our findings indicate that specificity for self-peptides directs the selection of CD4+CD25+ regulatory thymocytes by a process that is distinct from positive selection and deletion.


Science Translational Medicine | 2015

Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma.

Laura A. Johnson; John Scholler; Takayuki Ohkuri; Akemi Kosaka; Prachi R. Patel; Shannon E. McGettigan; Arben Nace; Tzvete Dentchev; Pramod Thekkat; Andreas Loew; Alina C. Boesteanu; Alexandria P. Cogdill; Taylor Chen; Joseph A. Fraietta; Christopher C. Kloss; Avery D. Posey; Boris Engels; Reshma Singh; Tucker Ezell; Neeraja Idamakanti; Melissa Ramones; Na Li; Li Zhou; Gabriela Plesa; John T. Seykora; Hideho Okada; Carl H. June; Jennifer Brogdon; Marcela V. Maus

A chimeric antigen receptor redirects T cells to treat glioblastoma. CAR T cells drive glioblastoma therapy Immunotherapy with chimeric antigen receptor (CAR) T cells can successfully treat B cell malignancies, but expansion into solid tumors has been limited by the lack of availability of tumor-specific antigens. Now, Johnson et al. target CAR T cells to a variant III mutation of the epidermal growth factor receptor (EGFRvIII), which is thought to be enriched in glioblastoma stem cells. They found that a low-affinity single-chain variable fragment was specific for EGFRvIII over wild-type EGFR and that CAR T cells transduced with this fragment were able to target antigen-expressing cells in vitro and in vivo in multiple mouse xenograft models of human glioblastoma. These cells are currently being moved into the clinic in a phase 1 clinical trial. Chimeric antigen receptors (CARs) are synthetic molecules designed to redirect T cells to specific antigens. CAR-modified T cells can mediate long-term durable remissions in B cell malignancies, but expanding this platform to solid tumors requires the discovery of surface targets with limited expression in normal tissues. The variant III mutation of the epidermal growth factor receptor (EGFRvIII) results from an in-frame deletion of a portion of the extracellular domain, creating a neoepitope. We chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv–based CAR in a xenograft model of glioblastoma. Next, we generated a panel of humanized scFvs and tested their specificity and function as soluble proteins and in the form of CAR-transduced T cells; a low-affinity scFv was selected on the basis of its specificity for EGFRvIII over wild-type EGFR. The lead candidate scFv was tested in vitro for its ability to direct CAR-transduced T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. We further evaluated the specificity of the lead CAR candidate in vitro against EGFR-expressing keratinocytes and in vivo in a model of mice grafted with normal human skin. EGFRvIII-directed CAR T cells were also able to control tumor growth in xenogeneic subcutaneous and orthotopic models of human EGFRvIII+ glioblastoma. On the basis of these results, we have designed a phase 1 clinical study of CAR T cells transduced with humanized scFv directed to EGFRvIII in patients with either residual or recurrent glioblastoma (NCT02209376).


Nature Immunology | 2013

The microRNA miR-155 controls CD8 + T cell responses by regulating interferon signaling

Donald T. Gracias; Erietta Stelekati; Jennifer L. Hope; Alina C. Boesteanu; Travis A. Doering; Jillian Norton; Yvonne M. Mueller; Joseph A. Fraietta; E. John Wherry; Martin Turner; Peter D. Katsikis

We found upregulation of expression of the microRNA miR-155 in primary effector and effector memory CD8+ T cells, but low miR-155 expression in naive and central memory cells. Antiviral CD8+ T cell responses and viral clearance were impaired in miR-155-deficient mice, and this defect was intrinsic to CD8+ T cells, as miR-155-deficient CD8+ T cells mounted greatly diminished primary and memory responses. Conversely, miR-155 overexpression augmented antiviral CD8+ T cell responses in vivo. Gene-expression profiling showed that miR-155-deficient CD8+ T cells had enhanced type I interferon signaling and were more susceptible to interferons antiproliferative effect. Inhibition of the type I interferon–associated transcription factors STAT1 or IRF7 resulted in enhanced responses of miR-155-deficient CD8+ T cells in vivo. We have thus identified a previously unknown role for miR-155 in regulating responsiveness to interferon and CD8+ T cell responses to pathogens in vivo.


Journal of Immunology | 2007

Memory CD8+ T Cells Require CD28 Costimulation

Annie B. Borowski; Alina C. Boesteanu; Yvonne M. Mueller; Caterina Carafides; David J. Topham; John D. Altman; Stephen R. Jennings; Peter D. Katsikis

CD8+ T cells are a critical component of the adaptive immune response against infections and tumors. A current paradigm in immunology is that naive CD8+ T cells require CD28 costimulation, whereas memory CD8+ T cells do not. We show here, however, that during viral infections of mice, costimulation is required in vivo for the reactivation of memory CD8+ T cells. In the absence of CD28 costimulation, secondary CD8+ T cell responses are greatly reduced and this impairs viral clearance. The failure of CD8+ T cells to expand in the absence of CD28 costimulation is CD4+ T cell help independent and is accompanied by a failure to down-regulate Bcl-2 and by cell cycle arrest. This requirement for CD28 costimulation was shown in both influenza A and HSV infections. Thus, contrary to current dogma, memory CD8+ T cells require CD28 costimulation to generate maximal secondary responses against pathogens. Importantly, this CD28 requirement was shown in the context of real infections were multiple other cytokines and costimulators may be up-regulated. Our findings have important implications for pathogens, such as HIV and measles virus, and tumors that evade the immune response by failing to provide CD28 costimulation. These findings also raise questions about the efficacy of CD8+ T cell-based vaccines against such pathogens and tumors.


Immunological Reviews | 2006

Role of TCR specificity in CD4+CD25+ regulatory T‐cell selection

Cristina Cozzo Picca; Joseph Larkin; Alina C. Boesteanu; Melissa A. Lerman; Andrew L. Rankin; Andrew J. Caton

Summary:  CD4+CD25+ regulatory T cells play a crucial role in preventing autoimmune disease and can also modulate immune responses in settings such as transplantation and infection. We have developed a transgenic mouse system in which the role that T‐cell receptor (TCR) specificity for self‐peptides plays in the formation of CD4+CD25+ regulatory T cells can be examined. We have shown that interactions with a single self‐peptide can induce thymocytes bearing an autoreactive TCR to undergo selection to become CD4+CD25+ regulatory T cells and that thymocytes bearing TCRs with low affinity for the selecting peptide do not appear to undergo selection into this pathway. In addition, thymocytes with identical specificity for the selecting self‐peptide can undergo overt deletion versus abundant selection to become CD4+CD25+ regulatory T cells in response to variations in expression of the selecting peptide in different lineages of transgenic mice. Finally, we have shown that CD4+CD25+ T cells proliferate in response to their selecting self‐peptide in the periphery, but these cells do not proliferate in response to lymphopenia in the absence of the selecting self‐peptide. These studies are determining how the specificity of the TCR for self‐peptides directs the thymic selection and peripheral expansion of CD4+CD25+ regulatory T cells.


Journal of Virology | 2000

Quantitation of CD8(+) T-lymphocyte responses to multiple epitopes from simian virus 40 (SV40) large T antigen in C57BL/6 mice immunized with SV40, SV40 T-antigen-transformed cells, or vaccinia virus recombinants expressing full-length T antigen or epitope minigenes.

Lawrence M. Mylin; Todd D. Schell; Debra Roberts; Melanie Epler; Alina C. Boesteanu; Edward J. Collins; Jeffrey A. Frelinger; Sebastian Joyce; Satvir S. Tevethia

ABSTRACT The cytotoxic T-lymphocyte response to wild-type simian virus 40 large tumor antigen (Tag) in C57BL/6 (H2b ) mice is directed against three H2-Db -restricted epitopes, I, II/III, and V, and oneH2-Kb -restricted epitope, IV. Epitopes I, II/III, and IV are immunodominant, while epitope V is immunorecessive. We investigated whether this hierarchical response was established in vivo or was due to differential expansion in vitro by using direct enumeration of CD8+ T lymphocytes with Tag epitope/major histocompatibility complex class I tetramers and intracellular gamma interferon staining. The results demonstrate that epitope IV-specific CD8+ T cells dominated the Tag-specific response in vivo following immunization with full-length Tag while CD8+ T cells specific for epitopes I and II/III were detected at less than one-third of this level. The immunorecessive nature of epitope V was apparent in vivo, since epitope V-specific CD8+ T cells were undetectable following immunization with full-length Tag. In contrast, high levels of epitope V-specific CD8+ T lymphocytes were recruited in vivo following immunization and boosting with a Tag variant in which epitopes I, II/III, and IV had been inactivated. In addition, analysis of the T-cell receptor β (TCRβ) repertoire of Tag epitope-specific CD8+ cells revealed that multiple TCRβ variable regions were utilized for each epitope except Tag epitope II/III, which was limited to TCRβ10 usage. These results indicate that the hierarchy of Tag epitope-specific CD8+T-cell responses is established in vivo.


Arthritis & Rheumatism | 2011

The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis.

Carol M. Artlett; Sihem Sassi-Gaha; Judy Rieger; Alina C. Boesteanu; Carol A. Feghali-Bostwick; Peter D. Katsikis

OBJECTIVE Systemic sclerosis (SSc) is a chronic idiopathic disease of unknown etiology that is characterized by fibrosis of the skin and visceral organs mediated by activated myofibroblasts. The recently identified inflammasomes are cytosolic receptors that tightly regulate the activity of caspase 1 and downstream signaling molecules such as interleukin-1β (IL-1β) and IL-18. The nucleotide-binding oligomerization domain (NOD)-like receptor 3 (NLRP3) inflammasome has been implicated in the development of idiopathic pulmonary fibrosis. This study was undertaken to assess the role of the inflammasome in SSc-related dermal or pulmonary fibrosis. METHODS Inflammasome gene transcripts were assayed in fibroblasts obtained from patients with SSc. Caspase 1 activation in SSc primary dermal and lung fibroblasts was inhibited, and the levels of hydroxyproline, COL1A1, COL3A1, IL-1β, IL-18, and α-smooth muscle actin (α-SMA) were measured. The role of the inflammasome in dermal fibrosis was investigated in NLRP3(-/-) and ASC(-/-) mice. RESULTS We identified increased expression of 40 genes associated with the inflammasome or downstream signaling molecules in SSc fibroblasts. Inhibition of caspase 1 in SSc dermal and lung fibroblasts abrogated the secretion of collagens, IL-1β, and IL-18. In addition, we observed decreased expression of the myofibroblast protein α-SMA in SSc dermal fibroblasts treated with a caspase 1 inhibitor. Furthermore, NLRP3(-/-) mice and ASC(-/-) mice were resistant to bleomycin-induced skin fibrosis, which suggests a key role for the inflammasome in in vivo fibrosis. CONCLUSION Innate immune signaling contributes to SSc fibrosis via activation of the inflammasome and caspase 1. These results suggest that inflammasome activation may play an important role in the pathogenesis of SSc.


Journal of Immunology | 2009

Chronic Antigen Stimulation Alone Is Sufficient to Drive CD8+ T Cell Exhaustion

Christine M. Bucks; Jillian Norton; Alina C. Boesteanu; Yvonne M. Mueller; Peter D. Katsikis

The failure of CD8+ T cells to respond to chronic infection has been termed “exhaustion” and describes the condition in which CD8+ T cells exhibit reduced differentiation, proliferation, and effector function. CD8+ T cell exhaustion has been extensively studied in the murine model of chronic infection, lymphocytic choriomeningitis virus (LCMV). Although LCMV-based studies have yielded many interesting findings, they have not allowed for discrimination between the roles of cytokine- and Ag-driven exhaustion. We have created a system of chronic Ag stimulation using murine influenza A virus that leads to exhaustion and functional disability of virus-specific CD8+ T cells, in the absence of high viral titers, sustained proinflammatory cytokine production and lymphocyte infection. Our findings show that Ag alone is sufficient to drive CD8+ T cell impairment, that Ag-driven loss of virus-specific CD8+ T cells is TRAIL mediated, and that removal of Ag reverses exhaustion. Although programmed death 1 was up-regulated on chronic Ag-stimulated CD8+ T cells, it played no role in the exhaustion. These findings provide a novel insight into the mechanisms that control functional exhaustion of CD8+ T cells in chronic infection.


Seminars in Immunology | 2009

Memory T cells need CD28 costimulation to remember.

Alina C. Boesteanu; Peter D. Katsikis

The activation and expansion of naïve T cells require costimulatory signals provided by CD28 and TNF family members. In contrast, for many years it was believed that memory T cells do not require CD28 costimulation for expansion during secondary responses. This was based on in vitro experiments that suggested the re-activation of memory T cells is somewhat independent of costimulation. Recent in vivo evidence, however, has challenged this and shown that both CD4+ and CD8+ memory T cells require CD28 costimulation for maximal expansion and pathogen clearance. This requirement has important implications for host immunity, vaccine development and immunotherapeutics.


Journal of Immunology | 2008

Late Signals from CD27 Prevent Fas-Dependent Apoptosis of Primary CD8+ T Cells

Douglas V. Dolfi; Alina C. Boesteanu; Constantinos Petrovas; Dong Xia; Eric A. Butz; Peter D. Katsikis

The role of costimulation has previously been confined to the very early stages of the CD8+ T cell response. In this study, we demonstrate the requirement for CD27 costimulation during the later phase, but not programming of the primary CD8+ T cell response to influenza virus and reveal a novel mechanism of action for CD27 costimulation. CD27 signals, during the later phase of the primary CD8+ T cell response, prevent apoptosis of Ag-specific CD8+ T cells. Blocking CD27L (CD70) on days 6 and 8 after infection reduces the number of NP(366–374)-specific CD8+ T cells, increases their sensitivity to CD95/Fas-mediated apoptosis, and up-regulates FasL on CD4+ T cells. This reduction of NP(366–374)-specific CD8+ T cells requires the presence of CD4+ T cells and Fas signaling. Lack of CD27 signals also decreases the quality of memory CD8+ T cell responses. Memory CD8+ T cells, which express surface CD27 similar to naive cells, however, do not require CD27 costimulation during a secondary response. Thus, CD27 acts indirectly to regulate primary Ag-specific CD8+ T cell responses by preventing apoptosis of CD8+ T cells during the later phase of the primary response and is required for optimal quality of memory cells, but is not required during normally primed secondary CD8+ T cell responses.

Collaboration


Dive into the Alina C. Boesteanu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl H. June

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura A. Johnson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge