Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison E. Shone is active.

Publication


Featured researches published by Alison E. Shone.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria

Giancarlo A. Biagini; Nicholas S. Fisher; Alison E. Shone; Murad A. Mubaraki; Abhishek Srivastava; Alasdair Hill; Thomas Antoine; Ashley J. Warman; Jill Davies; Chandrakala Pidathala; Richard Amewu; Suet C. Leung; Raman Sharma; Peter Gibbons; David W Hong; Bénédicte Pacorel; Alexandre S. Lawrenson; Sitthivut Charoensutthivarakul; Lee Taylor; Olivier Berger; Alison Mbekeani; Paul A. Stocks; Gemma L. Nixon; James Chadwick; Janet Hemingway; Michael J. Delves; Robert E. Sinden; Anne-Marie Zeeman; Clemens H. M. Kocken; Neil G. Berry

There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc1. Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria.


Angewandte Chemie | 2010

Identification of a 1,2,4,5-tetraoxane antimalarial drug-development candidate (RKA 182) with superior properties to the semisynthetic artemisinins.

Paul M. O'Neill; Richard Amewu; Gemma L. Nixon; Fatima Bousejra ElGarah; Mathirut Mungthin; James Chadwick; Alison E. Shone; Livia Vivas; Hollie Lander; Victoria Barton; Sant Muangnoicharoen; Patrick G. Bray; Jill Davies; B. Kevin Park; Sergio Wittlin; Reto Brun; Michael Preschel; Kesheng Zhang; Stephen A. Ward

Artemisinin (1) is an extract of the Chinese wormwood Artemisia annua and has been used since ancient times to treat malaria. Today, semisynthetic derivatives artesunate (2) and artemether (3) are used clinically in drug combinations (ACT; artemisinin-based combination therapy). However, first-generation analogues (e.g. 2 and 3) have a limited availability, high cost, and poor oral bioavailability (Scheme 1a). In addition to these drawbacks there have been recent reports of high failure rates associated with ACTs suggesting the possibility of clinical artemisinin resistance along the Thai–Cambodian border. In the light of these observations there is an urgent need to develop alternative endoperoxide-based therapies. The crucial structural functionality within artemisinin and synthetic 1,2,4-trioxanes is the endoperoxide bridge. Recently a series of molecules based on an ozonide structure were developed from which the candidate OZ277 was shown to have impressive antimalarial activity profiles in vitro and in rodent models of malaria. However, the recent


Journal of Medicinal Chemistry | 2012

Identification, design and biological evaluation of heterocyclic quinolones targeting Plasmodium falciparum type II NADH:quinone oxidoreductase (PfNDH2).

Chandrakala Pidathala; Richard Amewu; Bénédicte Pacorel; Gemma L. Nixon; Peter Gibbons; W. David Hong; Suet C. Leung; Neil G. Berry; Raman Sharma; Paul A. Stocks; Abhishek Srivastava; Alison E. Shone; Sitthivut Charoensutthivarakul; Lee Taylor; Olivier Berger; Alison Mbekeani; Alasdair Hill; Nicholas Fisher; Ashley J. Warman; Giancarlo A. Biagini; Stephen A. Ward; Paul M. O’Neill

A program was undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a dehydrogenase of the mitochondrial electron transport chain of the malaria parasite Plasmodium falciparum. PfNDH2 has only one known inhibitor, hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ), and this was used along with a range of chemoinformatics methods in the rational selection of 17 000 compounds for high-throughput screening. Twelve distinct chemotypes were identified and briefly examined leading to the selection of the quinolone core as the key target for structure–activity relationship (SAR) development. Extensive structural exploration led to the selection of 2-bisaryl 3-methyl quinolones as a series for further biological evaluation. The lead compound within this series 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4(1H)-one (CK-2-68) has antimalarial activity against the 3D7 strain of P. falciparum of 36 nM, is selective for PfNDH2 over other respiratory enzymes (inhibitory IC50 against PfNDH2 of 16 nM), and demonstrates low cytotoxicity and high metabolic stability in the presence of human liver microsomes. This lead compound and its phosphate pro-drug have potent in vivo antimalarial activity after oral administration, consistent with the target product profile of a drug for the treatment of uncomplicated malaria. Other quinolones presented (e.g., 6d, 6f, 14e) have the capacity to inhibit both PfNDH2 and P. falciparum cytochrome bc1, and studies to determine the potential advantage of this dual-targeting effect are in progress.


Journal of Medicinal Chemistry | 2009

Candidate selection and preclinical evaluation of N-tert-butyl isoquine (GSK369796), an affordable and effective 4-aminoquinoline antimalarial for the 21st century.

Paul M. O'Neill; B.K. Park; Alison E. Shone; James L. Maggs; P. Roberts; Paul A. Stocks; Giancarlo A. Biagini; Patrick G. Bray; Peter Gibbons; Neil G. Berry; Peter Winstanley; Amira Mukhtar; Richard P. Bonar-Law; Stephen Hindley; Ramesh Bambal; Charles B. Davis; M. Bates; T. K. Hart; S. L. Gresham; R. M. Lawrence; R. A. Brigandi; F. M. Gomez-delas-Heras; Domingo Gargallo; Stephen A. Ward

N-tert-Butyl isoquine (4) (GSK369796) is a 4-aminoquinoline drug candidate selected and developed as part of a public-private partnership between academics at Liverpool, MMV, and GSK pharmaceuticals. This molecule was rationally designed based on chemical, toxicological, pharmacokinetic, and pharmacodynamic considerations and was selected based on excellent activity against Plasmodium falciparum in vitro and rodent malaria parasites in vivo. The optimized chemistry delivered this novel synthetic quinoline in a two-step procedure from cheap and readily available starting materials. The molecule has a full industry standard preclinical development program allowing first into humans to proceed. Employing chloroquine (1) and amodiaquine (2) as comparator molecules in the preclinical plan, the first preclinical dossier of pharmacokinetic, toxicity, and safety pharmacology has also been established for the 4-aminoquinoline antimalarial class. These studies have revealed preclinical liabilities that have never translated into the human experience. This has resulted in the availability of critical information to other drug development teams interested in developing antimalarials within this class.


Journal of Medicinal Chemistry | 2008

Two-step synthesis of achiral dispiro-1,2,4,5-tetraoxanes with outstanding antimalarial activity, low toxicity, and high-stability profiles?

Gemma L. Ellis; Richard Amewu; Sunil Sabbani; Paul A. Stocks; Alison E. Shone; Deborah Stanford; Peter Gibbons; Jill Davies; Livia Vivas; Sarah Charnaud; Emily Bongard; Charlotte Hall; Karen Rimmer; Sonia Lozanom; María Jesús; Domingo Gargallo; Stephen A. Ward; Paul M. O'Neill

A rapid, two-step synthesis of a range of dispiro-1,2,4,5-tetraoxanes with potent antimalarial activity both in vitro and in vivo has been achieved. These 1,2,4,5-tetraoxanes have been proven to be superior to 1,2,4-trioxolanes in terms of stability and to be superior to trioxane analogues in terms of both stability and activity. Selected analogues have in vitro nanomolar antimalarial activity and good oral activity and are nontoxic in screens for both cytotoxicity and genotoxicity. The synthesis of a fluorescent 7-nitrobenza-2-oxa-1,3-diazole (NBD) tagged tetraoxane probe and use of laser scanning confocal microscopy techniques have shown that tagged molecules accumulate selectively only in parasite infected erythrocytes and that intraparasitic formation of adducts could be inhibited by co-incubation with the iron chelator desferrioxamine (DFO).


Journal of Antimicrobial Chemotherapy | 2013

Antimalarial pharmacology and therapeutics of atovaquone

Gemma L. Nixon; Darren M. Moss; Alison E. Shone; David G. Lalloo; Nicholas Fisher; Paul M. O'Neill; Stephen A. Ward; Giancarlo A. Biagini

Atovaquone is used as a fixed-dose combination with proguanil (Malarone) for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travellers. Indeed, in the USA, between 2009 and 2011, Malarone prescriptions accounted for 70% of all antimalarial pre-travel prescriptions. In 2013 the patent for Malarone will expire, potentially resulting in a wave of low-cost generics. Furthermore, the malaria scientific community has a number of antimalarial quinolones with a related pharmacophore to atovaquone at various stages of pre-clinical development. With this in mind, it is timely here to review the current knowledge of atovaquone, with the purpose of aiding the decision making of clinicians and drug developers involved in the future use of atovaquone generics or atovaquone derivatives.


Antimicrobial Agents and Chemotherapy | 2010

Discovery of Potent Small-Molecule Inhibitors of Multidrug-Resistant Plasmodium falciparum Using a Novel Miniaturized High-Throughput Luciferase-Based Assay

Edinson Lucumi; Claire Darling; Hyunil Jo; Andrew D. Napper; Rajesh Chandramohanadas; Nicholas Fisher; Alison E. Shone; Huiyan Jing; Stephen A. Ward; Giancarlo A. Biagini; William F. DeGrado; Scott L. Diamond; Doron C. Greenbaum

ABSTRACT Malaria is a global health problem that causes significant mortality and morbidity, with more than 1 million deaths per year caused by Plasmodium falciparum. Most antimalarial drugs face decreased efficacy due to the emergence of resistant parasites, which necessitates the discovery of new drugs. To identify new antimalarials, we developed an automated 384-well plate screening assay using P. falciparum parasites that stably express cytoplasmic firefly luciferase. After initial optimization, we tested two different types of compound libraries: known bioactive collections (Library of Pharmacologically Active Compounds [LOPAC] and the library from the National Institute of Neurological Disorders and Stroke [NINDS]) and a library of uncharacterized compounds (ChemBridge). A total of 12,320 compounds were screened at 5.5 μM. Selecting only compounds that reduced parasite growth by 85% resulted in 33 hits from the combined bioactive collection and 130 hits from the ChemBridge library. Fifteen novel drug-like compounds from the bioactive collection were found to be active against P. falciparum. Twelve new chemical scaffolds were found from the ChemBridge hits, the most potent of which was a series based on the 1,4-naphthoquinone scaffold, which is structurally similar to the FDA-approved antimalarial atovaquone. However, in contrast to atovaquone, which acts to inhibit the bc1 complex and block the electron transport chain in parasite mitochondria, we have determined that our new 1,4-napthoquinones act in a novel, non-bc1-dependent mechanism and remain potent against atovaquone- and chloroquine-resistant parasites. Ultimately, this study may provide new probes to understand the molecular details of the malaria life cycle and to identify new antimalarials.


Bioorganic & Medicinal Chemistry Letters | 2009

Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates

Nuna C. Araújo; Victoria Barton; M. Jones; Paul A. Stocks; Stephen A. Ward; Jill Davies; Patrick G. Bray; Alison E. Shone; Maria Lurdes Santos Cristiano; Paul M. O'Neill

A novel series of semi-synthetic trioxaquines and synthetic trioxolaquines were prepared, in moderate to good yields. Antimalarial activity was evaluated against both the chloroquine-sensitive 3D7 and resistant K1 strain of Plasmodium falciparum and both series of compounds were shown to be active in the low nanomolar range. For comparison the corresponding 9-amino acridine analogues were also prepared and shown to have low nanomolar activity like their quinoline counterparts.


MedChemComm | 2012

The development of quinolone esters as novel antimalarial agents targeting the Plasmodium falciparum bc1 protein complex

Robin Cowley; Suet C. Leung; Nicholas Fisher; Mohammed Al-Helal; Neil G. Berry; Alexandre S. Lawrenson; Raman Sharma; Alison E. Shone; Stephen A. Ward; Giancarlo A. Biagini; Paul M. O’Neill

Using the Gould-Jacobs methodology a small array of 6- and 7-substituted quinolones have been prepared. Analogues in the 7-series express activity as low as 0.46 nM versus Plasmodium falciparum malaria parasites and docking studies performed in silico at the yeast Qo site demonstrate a key role for residues His182 and Glu 272 in the recognition of high potency inhibitors.


Future Medicinal Chemistry | 2013

Targeting the mitochondrial electron transport chain of Plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era.

Gemma L. Nixon; Chandrakala Pidathala; Alison E. Shone; Thomas Antoine; Nicholas S. Fisher; Paul M. O'Neill; Stephen A. Ward; Giancarlo A. Biagini

Despite intense efforts, there has not been a truly new antimalarial, possessing a novel mechanism of action, registered for over 10 years. By virtue of a novel mode of action, it is hoped that the global challenge of multidrug-resistant parasites can be overcome, as well as developing drugs that possess prophylaxis and/or transmission-blocking properties, towards an elimination agenda. Many target-based and whole-cell screening drug development programs have been undertaken in recent years and here an overview of specific projects that have focused on targeting the parasites mitochondrial electron transport chain is presented. Medicinal chemistry activity has largely focused on inhibitors of the parasite cytochrome bc1 Complex (Complex III) including acridinediones, pyridones and quinolone aryl esters, as well as inhibitors of dihydroorotate dehydrogenase that includes triazolopyrimidines and benzimidazoles. Common barriers to progress and opportunities for novel chemistry and potential additional electron transport chain targets are discussed in the context of the target candidate profiles for uncomplicated malaria.

Collaboration


Dive into the Alison E. Shone's collaboration.

Top Co-Authors

Avatar

Giancarlo A. Biagini

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Stephen A. Ward

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Gemma L. Nixon

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Paul A. Stocks

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas Fisher

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge