Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Stocks is active.

Publication


Featured researches published by Paul A. Stocks.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria

Giancarlo A. Biagini; Nicholas S. Fisher; Alison E. Shone; Murad A. Mubaraki; Abhishek Srivastava; Alasdair Hill; Thomas Antoine; Ashley J. Warman; Jill Davies; Chandrakala Pidathala; Richard Amewu; Suet C. Leung; Raman Sharma; Peter Gibbons; David W Hong; Bénédicte Pacorel; Alexandre S. Lawrenson; Sitthivut Charoensutthivarakul; Lee Taylor; Olivier Berger; Alison Mbekeani; Paul A. Stocks; Gemma L. Nixon; James Chadwick; Janet Hemingway; Michael J. Delves; Robert E. Sinden; Anne-Marie Zeeman; Clemens H. M. Kocken; Neil G. Berry

There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc1. Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria.


Molecular Microbiology | 2006

PfCRT and the trans-vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX.

Patrick G. Bray; Mathirut Mungthin; Ian M. Hastings; Giancarlo A. Biagini; Dauda K. Saidu; Viswanathan Lakshmanan; David J. Johnson; Ruth H. Hughes; Paul A. Stocks; Paul M. O'Neill; David A. Fidock; David C. Warhurst; Stephen A. Ward

It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ‐resistant (CQR) parasite lines accumulate less CQ than do CQ‐sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy‐dependent CQ uptake and an additional component that resembles energy‐dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt‐modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV.


Molecular Pharmacology | 2008

Acridinediones: Selective and Potent Inhibitors of the Malaria Parasite Mitochondrial bc1 Complex

Giancarlo A. Biagini; Nicholas Fisher; Neil G. Berry; Paul A. Stocks; Brigitte Meunier; Dominic P. Williams; Richard P. Bonar-Law; Patrick G. Bray; Andrew Owen; Paul M. O'Neill; Stephen A. Ward

The development of drug resistance to affordable drugs has contributed to a global increase in the number of deaths from malaria. This unacceptable situation has stimulated research for new drugs active against multidrug-resistant Plasmodium falciparum parasites. In this regard, we show here that deshydroxy-1-imino derivatives of acridine (i.e., dihydroacridinediones) are selective antimalarial drugs acting as potent (nanomolar Ki) inhibitors of parasite mitochondrial bc1 complex. Inhibition of the bc1 complex led to a collapse of the mitochondrial membrane potential, resulting in cell death (IC50 ∼15 nM). The selectivity of one of the dihydroacridinediones against the parasite enzyme was some 5000-fold higher than for the human bc1 complex, significantly higher (∼200 fold) than that observed with atovaquone, a licensed bc1-specific antimalarial drug. Experiments performed with yeast manifesting mutations in the bc1 complex reveal that binding is directed to the quinol oxidation site (Qo) of the bc1 complex. This is supported by favorable binding energies for in silico docking of dihydroacridinediones to P. falciparum bc1 Qo. Dihydroacridinediones represent an entirely new class of bc1 inhibitors and the potential of these compounds as novel antimalarial drugs is discussed.


Journal of Medicinal Chemistry | 2012

Identification, design and biological evaluation of heterocyclic quinolones targeting Plasmodium falciparum type II NADH:quinone oxidoreductase (PfNDH2).

Chandrakala Pidathala; Richard Amewu; Bénédicte Pacorel; Gemma L. Nixon; Peter Gibbons; W. David Hong; Suet C. Leung; Neil G. Berry; Raman Sharma; Paul A. Stocks; Abhishek Srivastava; Alison E. Shone; Sitthivut Charoensutthivarakul; Lee Taylor; Olivier Berger; Alison Mbekeani; Alasdair Hill; Nicholas Fisher; Ashley J. Warman; Giancarlo A. Biagini; Stephen A. Ward; Paul M. O’Neill

A program was undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a dehydrogenase of the mitochondrial electron transport chain of the malaria parasite Plasmodium falciparum. PfNDH2 has only one known inhibitor, hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ), and this was used along with a range of chemoinformatics methods in the rational selection of 17 000 compounds for high-throughput screening. Twelve distinct chemotypes were identified and briefly examined leading to the selection of the quinolone core as the key target for structure–activity relationship (SAR) development. Extensive structural exploration led to the selection of 2-bisaryl 3-methyl quinolones as a series for further biological evaluation. The lead compound within this series 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4(1H)-one (CK-2-68) has antimalarial activity against the 3D7 strain of P. falciparum of 36 nM, is selective for PfNDH2 over other respiratory enzymes (inhibitory IC50 against PfNDH2 of 16 nM), and demonstrates low cytotoxicity and high metabolic stability in the presence of human liver microsomes. This lead compound and its phosphate pro-drug have potent in vivo antimalarial activity after oral administration, consistent with the target product profile of a drug for the treatment of uncomplicated malaria. Other quinolones presented (e.g., 6d, 6f, 14e) have the capacity to inhibit both PfNDH2 and P. falciparum cytochrome bc1, and studies to determine the potential advantage of this dual-targeting effect are in progress.


Journal of Medicinal Chemistry | 2009

Candidate selection and preclinical evaluation of N-tert-butyl isoquine (GSK369796), an affordable and effective 4-aminoquinoline antimalarial for the 21st century.

Paul M. O'Neill; B.K. Park; Alison E. Shone; James L. Maggs; P. Roberts; Paul A. Stocks; Giancarlo A. Biagini; Patrick G. Bray; Peter Gibbons; Neil G. Berry; Peter Winstanley; Amira Mukhtar; Richard P. Bonar-Law; Stephen Hindley; Ramesh Bambal; Charles B. Davis; M. Bates; T. K. Hart; S. L. Gresham; R. M. Lawrence; R. A. Brigandi; F. M. Gomez-delas-Heras; Domingo Gargallo; Stephen A. Ward

N-tert-Butyl isoquine (4) (GSK369796) is a 4-aminoquinoline drug candidate selected and developed as part of a public-private partnership between academics at Liverpool, MMV, and GSK pharmaceuticals. This molecule was rationally designed based on chemical, toxicological, pharmacokinetic, and pharmacodynamic considerations and was selected based on excellent activity against Plasmodium falciparum in vitro and rodent malaria parasites in vivo. The optimized chemistry delivered this novel synthetic quinoline in a two-step procedure from cheap and readily available starting materials. The molecule has a full industry standard preclinical development program allowing first into humans to proceed. Employing chloroquine (1) and amodiaquine (2) as comparator molecules in the preclinical plan, the first preclinical dossier of pharmacokinetic, toxicity, and safety pharmacology has also been established for the 4-aminoquinoline antimalarial class. These studies have revealed preclinical liabilities that have never translated into the human experience. This has resulted in the availability of critical information to other drug development teams interested in developing antimalarials within this class.


Journal of Medicinal Chemistry | 2008

Two-step synthesis of achiral dispiro-1,2,4,5-tetraoxanes with outstanding antimalarial activity, low toxicity, and high-stability profiles?

Gemma L. Ellis; Richard Amewu; Sunil Sabbani; Paul A. Stocks; Alison E. Shone; Deborah Stanford; Peter Gibbons; Jill Davies; Livia Vivas; Sarah Charnaud; Emily Bongard; Charlotte Hall; Karen Rimmer; Sonia Lozanom; María Jesús; Domingo Gargallo; Stephen A. Ward; Paul M. O'Neill

A rapid, two-step synthesis of a range of dispiro-1,2,4,5-tetraoxanes with potent antimalarial activity both in vitro and in vivo has been achieved. These 1,2,4,5-tetraoxanes have been proven to be superior to 1,2,4-trioxolanes in terms of stability and to be superior to trioxane analogues in terms of both stability and activity. Selected analogues have in vitro nanomolar antimalarial activity and good oral activity and are nontoxic in screens for both cytotoxicity and genotoxicity. The synthesis of a fluorescent 7-nitrobenza-2-oxa-1,3-diazole (NBD) tagged tetraoxane probe and use of laser scanning confocal microscopy techniques have shown that tagged molecules accumulate selectively only in parasite infected erythrocytes and that intraparasitic formation of adducts could be inhibited by co-incubation with the iron chelator desferrioxamine (DFO).


Bioorganic & Medicinal Chemistry Letters | 2009

Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates

Nuna C. Araújo; Victoria Barton; M. Jones; Paul A. Stocks; Stephen A. Ward; Jill Davies; Patrick G. Bray; Alison E. Shone; Maria Lurdes Santos Cristiano; Paul M. O'Neill

A novel series of semi-synthetic trioxaquines and synthetic trioxolaquines were prepared, in moderate to good yields. Antimalarial activity was evaluated against both the chloroquine-sensitive 3D7 and resistant K1 strain of Plasmodium falciparum and both series of compounds were shown to be active in the low nanomolar range. For comparison the corresponding 9-amino acridine analogues were also prepared and shown to have low nanomolar activity like their quinoline counterparts.


Antioxidants & Redox Signaling | 2013

Glutathione Transport: A New Role for PfCRT in Chloroquine Resistance

Eva-Maria Patzewitz; J. Enrique Salcedo-Sora; Eleanor H. Wong; Sonal Sethia; Paul A. Stocks; Spencer C. Maughan; James Augustus Henry Murray; Sanjeev Krishna; Patrick G. Bray; Stephen A. Ward; Sylke Müller

AIMS Chloroquine (CQ) kills Plasmodium falciparum by binding heme, preventing its detoxification to hemozoin in the digestive vacuole (DV) of the parasite. CQ resistance (CQR) is associated with mutations in the DV membrane protein P. falciparum chloroquine resistance transporter (PfCRT), mediating the leakage of CQ from the DV. However, additional factors are thought to contribute to the resistance phenotype. This study tested the hypothesis that there is a link between glutathione (GSH) and CQR. RESULTS Using isogenic parasite lines carrying wild-type or mutant pfcrt, we reveal lower levels of GSH in the mutant lines and enhanced sensitivity to the GSH synthesis inhibitor l-buthionine sulfoximine, without any alteration in cytosolic de novo GSH synthesis. Incubation with N-acetylcysteine resulted in increased GSH levels in all parasites, but only reduced susceptibility to CQ in PfCRT mutant-expressing lines. In support of a heme destruction mechanism involving GSH in CQR parasites, we also found lower hemozoin levels and reduced CQ binding in the CQR PfCRT-mutant lines. We further demonstrate via expression in Xenopus laevis oocytes that the mutant alleles of Pfcrt in CQR parasites selectively transport GSH. INNOVATION We propose a mechanism whereby mutant pfcrt allows enhanced transport of GSH into the parasites DV. The elevated levels of GSH in the DV reduce the level of free heme available for CQ binding, which mediates the lower susceptibility to CQ in the PfCRT mutant parasites. CONCLUSION PfCRT has a dual role in CQR, facilitating both efflux of harmful CQ from the DV and influx of beneficial GSH into the DV.


Bioorganic & Medicinal Chemistry | 2010

Design, synthesis and antimalarial/anticancer evaluation of spermidine linked artemisinin conjugates designed to exploit polyamine transporters in Plasmodium falciparum and HL-60 cancer cell lines.

James Chadwick; M. Jones; Amy E. Mercer; Paul A. Stocks; Stephen A. Ward; B. Kevin Park; Paul M. O’Neill

A series of artemisinin-spermidine conjugates designed to utilise the upregulated polyamine transporter found in cancer cells have been prepared. These conjugates were evaluated against human promyelocytic leukaemia HL-60 cells and chloroquine-sensitive 3D7 Plasmodium falciparum and several show promising anticancer and antimalarial activity. Although some limitations in this vector-based approach are apparent, a number of high potency Boc-protected analogues were identified with activity against malaria parasites as low as 0.21nM.


Bioorganic & Medicinal Chemistry Letters | 2009

Antitumour and antimalarial activity of artemisinin-acridine hybrids

M. Jones; Amy E. Mercer; Paul A. Stocks; Louise La Pensée; Richard Cosstick; B. Kevin Park; Miriam E. Kennedy; Ivo Piantanida; Stephen A. Ward; Jill Davies; Patrick G. Bray; Sarah Rawe; Jonathan Baird; Tafadzwa Charidza; Omar Janneh; Paul M. O’Neill

Artemisinin-acridine hybrids were prepared and evaluated for their in vitro activity against tumour cell lines and a chloroquine sensitive strain of Plasmodium falciparum. They showed a 2-4-fold increase in activity against HL60, MDA-MB-231 and MCF-7 cells in comparison with dihydroartemisinin (DHA) and moderate antimalarial activity. Strong evidence that the compounds induce apoptosis in HL60 cells was obtained by flow cytometry, which indicated accumulation of cells in the G1 phase of the cell cycle.

Collaboration


Dive into the Paul A. Stocks's collaboration.

Top Co-Authors

Avatar

Stephen A. Ward

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giancarlo A. Biagini

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick G. Bray

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Jill Davies

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison E. Shone

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge