Alison J. Stattersfield
BirdLife International
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alison J. Stattersfield.
Bird Conservation International | 2012
John P. Croxall; Stuart H. M. Butchart; Ben Lascelles; Alison J. Stattersfield; Ben Sullivan; Andy Symes; Phil Taylor
Summary We review the conservation status of, and threats to, all 346 species of seabirds, based on BirdLife International’s data and assessments for the 2010 IUCN Red List. We show that overall, seabirds are more threatened than other comparable groups of birds and that their status has deteriorated faster over recent decades. The principal current threats at sea are posed by commercial fisheries (through competition and mortality on fishing gear) and pollution, whereas on land, alien invasive predators, habitat degradation and human disturbance are the main threats. Direct exploitation remains a problem for some species both at sea and ashore. The priority actions needed involve: a) formal and effective site protection, especially for Important Bird Area (IBA) breeding sites and for marine IBA feeding and aggregation sites, as part of national, regional and global networks of Marine Protected Areas; b) removal of invasive, especially predatory, alien species (a list of priority sites is provided), as part of habitat and species recovery initiatives; and c) reduction of bycatch to negligible levels, as part of comprehensive implementation of ecosystem approaches to fisheries. The main knowledge gaps and research priorities relate to the three topics above but new work is needed on impacts of aquaculture, energy generation operations and climate change (especially effects on the distribution of prey species and rise in sea level). We summarise the relevant national and international jurisdictional responsibilities, especially in relation to endemic and globally threatened species.
PLOS Biology | 2004
Stuart H. M. Butchart; Alison J. Stattersfield; Leon Bennun; Sue M Shutes; H. Resit Akçakaya; Jonathan E. M. Baillie; Simon N. Stuart; Craig Hilton-Taylor; Georgina M. Mace
The rapid destruction of the planets biodiversity has prompted the nations of the world to set a target of achieving a significant reduction in the rate of loss of biodiversity by 2010. However, we do not yet have an adequate way of monitoring progress towards achieving this target. Here we present a method for producing indices based on the IUCN Red List to chart the overall threat status (projected relative extinction risk) of all the worlds bird species from 1988 to 2004. Red List Indices (RLIs) are based on the number of species in each Red List category, and on the number changing categories between assessments as a result of genuine improvement or deterioration in status. The RLI for all bird species shows that their overall threat status has continued to deteriorate since 1988. Disaggregated indices show that deteriorations have occurred worldwide and in all major ecosystems, but with particularly steep declines in the indices for Indo-Malayan birds (driven by intensifying deforestation of the Sundaic lowlands) and for albatrosses and petrels (driven by incidental mortality in commercial longline fisheries). RLIs complement indicators based on species population trends and habitat extent for quantifying global trends in the status of biodiversity. Their main weaknesses are that the resolution of status changes is fairly coarse and that delays may occur before some status changes are detected. Their greatest strength is that they are based on information from nearly all species in a taxonomic group worldwide, rather than a potentially biased subset. At present, suitable data are only available for birds, but indices for other taxonomic groups are in development, as is a sampled index based on a stratified sample from all major taxonomic groups.
Conservation Biology | 2008
Nick Salafsky; Daniel Salzer; Alison J. Stattersfield; Craig Hilton-Taylor; Rachel Neugarten; Stuart H. M. Butchart; Ben Collen; Neil A. Cox; Lawrence L. Master; Sheila O'connor; David Wilkie
An essential foundation of any science is a standard lexicon. Any given conservation project can be described in terms of the biodiversity targets, direct threats, contributing factors at the project site, and the conservation actions that the project team is employing to change the situation. These common elements can be linked in a causal chain, which represents a theory of change about how the conservation actions are intended to bring about desired project outcomes. If project teams want to describe and share their work and learn from one another, they need a standard and precise lexicon to specifically describe each node along this chain. To date, there have been several independent efforts to develop standard classifications for the direct threats that affect biodiversity and the conservation actions required to counteract these threats. Recognizing that it is far more effective to have only one accepted global scheme, we merged these separate efforts into unified classifications of threats and actions, which we present here. Each classification is a hierarchical listing of terms and associated definitions. The classifications are comprehensive and exclusive at the upper levels of the hierarchy, expandable at the lower levels, and simple, consistent, and scalable at all levels. We tested these classifications by applying them post hoc to 1191 threatened bird species and 737 conservation projects. Almost all threats and actions could be assigned to the new classification systems, save for some cases lacking detailed information. Furthermore, the new classification systems provided an improved way of analyzing and comparing information across projects when compared with earlier systems. We believe that widespread adoption of these classifications will help practitioners more systematically identify threats and appropriate actions, managers to more efficiently set priorities and allocate resources, and most important, facilitate cross-project learning and the development of a systematic science of conservation.
Philosophical Transactions of the Royal Society B | 2005
Stuart H. M. Butchart; Alison J. Stattersfield; Jonathan E. M. Baillie; Leon Bennun; Simon N. Stuart; H.R. Akçakaya; Craig Hilton-Taylor; Georgina M. Mace
The World Conservation Union (IUCN) Red List is widely recognized as the most authoritative and objective system for classifying species by their risk of extinction. Red List Indices (RLIs) illustrate the relative rate at which a particular set of species change in overall threat status (i.e. projected relative extinction-risk), based on population and range size and trends as quantified by Red List categories. RLIs can be calculated for any representative set of species that has been fully assessed at least twice. They are based on the number of species in each Red List category, and the number changing categories between assessments as a result of genuine improvement or deterioration in status. RLIs show a fairly coarse level of resolution, but for fully assessed taxonomic groups they are highly representative, being based on information from a high proportion of species worldwide. The RLI for the worlds birds shows that that their overall threat status has deteriorated steadily during the years 1988–2004 in all biogeographic realms and ecosystems. A preliminary RLI for amphibians for 1980–2004 shows similar rates of decline. RLIs are in development for other groups. In addition, a sampled index is being developed, based on a stratified sample of species from all major taxonomic groups, realms and ecosystems. This will provide extinction-risk trends that are more representative of all biodiversity.
Science | 2009
Matt Walpole; Rosamunde E.A. Almond; Charles Besançon; Stuart H. M. Butchart; Diarmid Campbell-Lendrum; Geneviève M. Carr; Ben Collen; Linda Collette; Nicholas Davidson; Ehsan Dulloo; Asghar M. Fazel; James N. Galloway; Mike Gill; Tessa Goverse; Marc Hockings; Danna J. Leaman; David H. W. Morgan; Carmen Revenga; Carrie J. Rickwood; Frederik Schutyser; Sarah Simons; Alison J. Stattersfield; Tristan D. Tyrrell; Jean-Christophe Vié; Mark Zimsky
Biodiversity indicators used by policy-makers are underdeveloped and underinvested. In response to global declines in biodiversity, some 190 countries have pledged, under the Convention on Biological Diversity (CBD), to reduce the rate of biodiversity loss by 2010 (1, 2). Moreover, this target has recently been incorporated into the Millennium Development Goals in recognition of the impact of biodiversity loss on human well-being (3). Timely information on where and in what ways the target has or has not been met, as well as the likely direction of future trends, depends on a rigorous, relevant, and comprehensive suite of biodiversity indicators with which to track changes over time, to assess the impacts of policy and management responses, and to identify priorities for action. How far have we come in meeting these needs, and is it sufficient?
Bird Conservation International | 2008
Jeff S. Kirby; Alison J. Stattersfield; Stuart H. M. Butchart; Michael I. Evans; Richard Grimmett; Victoria R. Jones; John O'Sullivan; Graham M. Tucker; Ian Newton
Summary An estimated 19% of the world’s 9,856 extant bird species are migratory, including some 1,600 species of land- and waterbirds. In 2008, 11% of migratory land- and waterbirds were classed by BirdLife International as threatened or near-threatened on the IUCN Red List. Red List indices show that these migrants have become more threatened since 1988, with 33 species deteriorating and just six improving in status. There is also increasing evidence of regional declines. Population trend data show that more Nearctic–Neotropical migrants have declined than increased in North America since the 1980s, and more Palearctic–Afrotropical migrants breeding in Europe declined than increased during 1970–2000. Reviews of the status of migratory raptors show unfavourable conservation status for 51% of species in the African–Eurasian region (in 2005), and 33% of species in Central, South and East Asia (in 2007). Land-use change owing to agriculture is the most frequently cited threat affecting nearly 80% of all threatened and nearthreatened species. However, while agricultural intensification on the breeding grounds is often proposed as the major driver of declines in Palearctic–Afrotropical migrants, some species appear to be limited by the quantity and quality of available habitat in non-breeding areas, notably the drylands of tropical Africa. Forest fragmentation in breeding areas has contributed to the declines of Nearctic–Neotropical migrants with deforestation in non-breeding areas another possible factor. Infrastructure development including wind turbines, cables, towers and masts can also be a threat. Over-harvesting and persecution remain serious threats, particularly at key migration locations. Climate change is affecting birds already, is expected to exacerbate all these pressures, and may also increase competition between migratory and non-migratory species. The conservation of migratory birds thus requires a multitude of approaches. Many migratory birds require effective management of their critical sites, and Important Bird Areas (IBAs) provide an important foundation for such action; however to function effectively in conserving migratory species, IBAs need to be protected and the coherence of the network requires regular review. Since many migratory species (c. 55%) are widely dispersed across their breeding or nonbreeding ranges, it is essential to address the human-induced changes at the wider landscape scale, a very considerable challenge. Efforts to conserve migratory birds in one part of the range are less effective if unaddressed threats are reducing these species’ populations and habitats elsewhere. International collaboration and coordinated action along migration flyways as a whole are thus key elements in any strategy for the conservation of migratory birds.
PLOS ONE | 2013
Ben Phalan; Monika Bertzky; Stuart H. M. Butchart; Paul F. Donald; Jörn P. W. Scharlemann; Alison J. Stattersfield; Andrew Balmford
Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km2 per year from 1999–2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential—while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones—may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having ‘low vulnerability’, in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy feedstocks.
Oryx | 2006
Stuart H. M. Butchart; Alison J. Stattersfield; Nigel J. Collar
Considerable resources and efforts have been directed at biodiversity conservation in recent years, but measures of the success of conservation pro- grammes have been limited. Based on information on population sizes, trends, threatening processes and the nature and intensity of conservation actions imple- mented during 1994-2004, we assessed that 16 bird species would have probably become extinct during this period if conservation programmes for them had not been undertaken. The mean minimum population size of these 16 species increased from 34 to 147 breeding individuals during 1994-2004. In 1994, 63% of them had declining populations but by 2004, 81% were increasing. Most of these species (63%) are found on islands. The principal threats that led to their decline were habitat loss and degradation (88%), invasive species (50%) and exploitation (38%), a pattern similar to that for other threatened species, but with exploitation and invasive species being relatively more important. The principal actions carried out were habitat protection and management (75% of species), control of invasive species (50%), and captive breeding and release (33%). The 16 species represent only 8.9% of those currently classified as Critically Endangered, and 1.3% of those threatened with extinction. Many of these additional species slipped closer to extinction during 1994-2004, including 164 that deteriorated in status sufficiently to be uplisted to higher categories of extinction risk on the IUCN Red List (IUCN, 2006). Efforts need to be considerably scaled up to prevent many more extinctions in the coming decades. The knowledge and tools to achieve this are available, but we need to mobilize the resources and political will to apply them.
Oryx | 2009
Valerie Kapos; Andrew Balmford; Rosalind Aveling; Philip Bubb; Peter Carey; Abigail Entwistle; Teresa Mulliken; Roger Safford; Alison J. Stattersfield; Matt Walpole; Andrea Manica
To use more effectively the limited resources available for conservation there is an urgent need to identify which conservation approaches are most likely to succeed. However, measuring conservation success is often difficult, as it is achieved outside the project time frame. Measures of implementation are often reported to donors to demonstrate achievement but it is unclear whether they really predict conservation success. We applied a conceptual framework and score-card developed by the Cambridge Conservation Forum (CCF) to a sample of 60 conservation activities to determine the predictive power of implementation measures versus measures of key outcomes (later steps in the models defined in the CCF tools). We show that assessing key outcomes is often more difficult than quantifying the degree of implementation of a project but that, while implementation is a poor predictor of success, key outcomes provide a feasible and much more reliable proxy for whether a project will deliver real conservation benefits. The CCF framework and evaluation tool provide a powerful basis for synthesizing past experience and, with wider application, will help to identify factors that affect the success of conservation activities.
Conservation Biology | 2008
M. de L. Brooke; Stuart H. M. Butchart; Stephen T. Garnett; Gabriel Crowley; N.B. Mantilla-Beniers; Alison J. Stattersfield
In recent centuries bird species have been deteriorating in status and becoming extinct at a rate that may be 2-3 orders of magnitude higher than in prehuman times. We examined extinction rates of bird species designated critically endangered in 1994 and the rate at which species have moved through the IUCN (World Conservation Union) Red List categories of extinction risk globally for the period 1988-2004 and regionally in Australia from 1750 to 2000. For Australia we drew on historical accounts of the extent and condition of species habitats, spread of invasive species, and changes in sighting frequencies. These data sets permitted comparison of observed rates of movement through the IUCN Red List categories with novel predictions based on the IUCN Red List criterion E, which relates to explicit extinction probabilities determined, for example, by population viability analysis. The comparison also tested whether species listed on the basis of other criteria face a similar probability of moving to a higher threat category as those listed under criterion E. For the rate at which species moved from vulnerable to endangered, there was a good match between observations and predictions, both worldwide and in Australia. Nevertheless, species have become extinct at a rate that, although historically high, is 2 (Australia) to 10 (globally) times lower than predicted. Although the extinction probability associated with the critically endangered category may be too high, the shortfall in realized extinctions can also be attributed to the beneficial impact of conservation intervention. These efforts may have reduced the number of global extinctions from 19 to 3 and substantially slowed the extinction trajectory of 33 additional critically endangered species. Our results suggest that current conservation action benefits species on the brink of extinction, but is less targeted at or has less effect on moderately threatened species.