Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart H. M. Butchart is active.

Publication


Featured researches published by Stuart H. M. Butchart.


Science | 2010

Global Biodiversity: Indicators of Recent Declines

Stuart H. M. Butchart; Matt Walpole; Ben Collen; Arco J. van Strien; Jörn P. W. Scharlemann; Rosamunde E.A. Almond; Jonathan E. M. Baillie; Bastian Bomhard; Ciaire Brown; John F. Bruno; Kent E. Carpenter; Geneviève M. Carr; Janice Chanson; Anna M. Chenery; Jorge Csirke; Nicholas Davidson; Frank Dentener; Matt Foster; Alessandro Galli; James N. Galloway; Piero Genovesi; Richard D. Gregory; Marc Hockings; Valerie Kapos; Jean-Francois Lamarque; Fiona Leverington; J Loh; Melodie A. McGeoch; Louise McRae; Anahit Minasyan

Global Biodiversity Target Missed In 2002, the Convention on Biological Diversity (CBD) committed to a significant reduction in the rate of biodiversity loss by 2010. There has been widespread conjecture that this target has not been met. Butchart et al. (p. 1164, published online 29 April) analyzed over 30 indicators developed within the CBDs framework. These indicators include the condition or state of biodiversity (e.g., species numbers, population sizes), the pressures on biodiversity (e.g., deforestation), and the responses to maintain biodiversity (e.g., protected areas) and were assessed between about 1970 and 2005. Taken together, the results confirm that we have indeed failed to meet the 2010 targets. An analysis of 30 indicators shows that the Convention on Biological Diversity’s 2010 targets have not been met. In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species’ population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.


Science | 2010

Biodiversity Conservation: Challenges Beyond 2010

Michael R. W. Rands; William M. Adams; Leon Bennun; Stuart H. M. Butchart; Andrew Clements; David A. Coomes; Abigail Entwistle; Ian Hodge; Valerie Kapos; Jörn P. W. Scharlemann; William J. Sutherland; Bhaskar Vira

Biodiversity Convention In October 2010, the Convention on Biological Diversity will meet to assess the current condition of global biodiversity and to propose and agree on priorities for its future conservation. In this context, Rands et al. (p. 1298; see the News Focus section; see the cover) review recent patterns of biodiversity conservation, highlighting successes, as well as current and future threats. They argue that biodiversity should be treated as a public good, with responsibility for its conservation integrated across sectors of society and government, rather than be confined to the business of environmental agencies, and review the conditions under which this goal might be achieved. The continued growth of human populations and of per capita consumption have resulted in unsustainable exploitation of Earth’s biological diversity, exacerbated by climate change, ocean acidification, and other anthropogenic environmental impacts. We argue that effective conservation of biodiversity is essential for human survival and the maintenance of ecosystem processes. Despite some conservation successes (especially at local scales) and increasing public and government interest in living sustainably, biodiversity continues to decline. Moving beyond 2010, successful conservation approaches need to be reinforced and adequately financed. In addition, however, more radical changes are required that recognize biodiversity as a global public good, that integrate biodiversity conservation into policies and decision frameworks for resource production and consumption, and that focus on wider institutional and societal changes to enable more effective implementation of policy.


Science | 2013

Essential Biodiversity Variables

Henrique M. Pereira; Simon Ferrier; Michele Walters; Gary N. Geller; R.H.G. Jongman; Robert J. Scholes; Michael William Bruford; Neil Brummitt; Stuart H. M. Butchart; A C Cardoso; E Dulloo; Daniel P. Faith; Jörg Freyhof; Richard D. Gregory; Carlo H. R. Heip; Robert Höft; George C. Hurtt; Walter Jetz; Daniel S. Karp; Melodie A. McGeoch; D Obura; Yusuke Onoda; Nathalie Pettorelli; Belinda Reyers; Roger Sayre; Joern P. W. Scharlemann; Simon N. Stuart; Eren Turak; Matt Walpole; Martin Wegmann

A global system of harmonized observations is needed to inform scientists and policy-makers. Reducing the rate of biodiversity loss and averting dangerous biodiversity change are international goals, reasserted by the Aichi Targets for 2020 by Parties to the United Nations (UN) Convention on Biological Diversity (CBD) after failure to meet the 2010 target (1, 2). However, there is no global, harmonized observation system for delivering regular, timely data on biodiversity change (3). With the first plenary meeting of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) soon under way, partners from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (4) are developing—and seeking consensus around—Essential Biodiversity Variables (EBVs) that could form the basis of monitoring programs worldwide.


Bird Conservation International | 2012

Seabird conservation status, threats and priority actions: a global assessment

John P. Croxall; Stuart H. M. Butchart; Ben Lascelles; Alison J. Stattersfield; Ben Sullivan; Andy Symes; Phil Taylor

Summary We review the conservation status of, and threats to, all 346 species of seabirds, based on BirdLife International’s data and assessments for the 2010 IUCN Red List. We show that overall, seabirds are more threatened than other comparable groups of birds and that their status has deteriorated faster over recent decades. The principal current threats at sea are posed by commercial fisheries (through competition and mortality on fishing gear) and pollution, whereas on land, alien invasive predators, habitat degradation and human disturbance are the main threats. Direct exploitation remains a problem for some species both at sea and ashore. The priority actions needed involve: a) formal and effective site protection, especially for Important Bird Area (IBA) breeding sites and for marine IBA feeding and aggregation sites, as part of national, regional and global networks of Marine Protected Areas; b) removal of invasive, especially predatory, alien species (a list of priority sites is provided), as part of habitat and species recovery initiatives; and c) reduction of bycatch to negligible levels, as part of comprehensive implementation of ecosystem approaches to fisheries. The main knowledge gaps and research priorities relate to the three topics above but new work is needed on impacts of aquaculture, energy generation operations and climate change (especially effects on the distribution of prey species and rise in sea level). We summarise the relevant national and international jurisdictional responsibilities, especially in relation to endemic and globally threatened species.


Science | 2014

A mid-term analysis of progress toward international biodiversity targets

Derek P. Tittensor; Matt Walpole; Samantha L. L. Hill; Daniel G. Boyce; Gregory L. Britten; Neil D. Burgess; Stuart H. M. Butchart; Paul W. Leadley; Eugenie C. Regan; Rob Alkemade; Roswitha Baumung; Céline Bellard; Lex Bouwman; Nadine Bowles-Newark; Anna M. Chenery; William W. L. Cheung; Villy Christensen; H. David Cooper; Annabel R. Crowther; Matthew J. R. Dixon; Alessandro Galli; Valérie Gaveau; Richard D. Gregory; Nicolás L. Gutiérrez; Tim Hirsch; Robert Höft; Stephanie R. Januchowski-Hartley; Marion Karmann; Cornelia B. Krug; Fiona Leverington

In 2010, the international community, under the auspices of the Convention on Biological Diversity, agreed on 20 biodiversity-related “Aichi Targets” to be achieved within a decade. We provide a comprehensive mid-term assessment of progress toward these global targets using 55 indicator data sets. We projected indicator trends to 2020 using an adaptive statistical framework that incorporated the specific properties of individual time series. On current trajectories, results suggest that despite accelerating policy and management responses to the biodiversity crisis, the impacts of these efforts are unlikely to be reflected in improved trends in the state of biodiversity by 2020. We highlight areas of societal endeavor requiring additional efforts to achieve the Aichi Targets, and provide a baseline against which to assess future progress. Although conservation efforts are accelerating, their impact is unlikely to improve the global state of biodiversity by 2020. Indicators of progress and decline The targets set by the Convention on Biological Diversity in 2010 focused international efforts to alleviate global biodiversity decline. However, many of the consequences of these efforts will not be evident by the 2020 deadline agreed to by governments of 150 countries. Tittensor et al. analyzed data on 55 different biodiversity indicators to predict progress toward the 2020 targets—indicators such as protected area coverage, land-use trends, and endangered species status. The analysis pinpoints the problems and areas that will need the most attention in the next few years. Science, this issue p. 241


PLOS Biology | 2004

Measuring global trends in the status of biodiversity: red list indices for birds.

Stuart H. M. Butchart; Alison J. Stattersfield; Leon Bennun; Sue M Shutes; H. Resit Akçakaya; Jonathan E. M. Baillie; Simon N. Stuart; Craig Hilton-Taylor; Georgina M. Mace

The rapid destruction of the planets biodiversity has prompted the nations of the world to set a target of achieving a significant reduction in the rate of loss of biodiversity by 2010. However, we do not yet have an adequate way of monitoring progress towards achieving this target. Here we present a method for producing indices based on the IUCN Red List to chart the overall threat status (projected relative extinction risk) of all the worlds bird species from 1988 to 2004. Red List Indices (RLIs) are based on the number of species in each Red List category, and on the number changing categories between assessments as a result of genuine improvement or deterioration in status. The RLI for all bird species shows that their overall threat status has continued to deteriorate since 1988. Disaggregated indices show that deteriorations have occurred worldwide and in all major ecosystems, but with particularly steep declines in the indices for Indo-Malayan birds (driven by intensifying deforestation of the Sundaic lowlands) and for albatrosses and petrels (driven by incidental mortality in commercial longline fisheries). RLIs complement indicators based on species population trends and habitat extent for quantifying global trends in the status of biodiversity. Their main weaknesses are that the resolution of status changes is fairly coarse and that delays may occur before some status changes are detected. Their greatest strength is that they are based on information from nearly all species in a taxonomic group worldwide, rather than a potentially biased subset. At present, suitable data are only available for birds, but indices for other taxonomic groups are in development, as is a sampled index based on a stratified sample from all major taxonomic groups.


PLOS ONE | 2013

Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals

Wendy B. Foden; Stuart H. M. Butchart; Simon N. Stuart; Jean-Christophe Vié; H. Resit Akçakaya; Ariadne Angulo; Lyndon DeVantier; Alexander Gutsche; Emre Turak; Long Cao; Simon D. Donner; Vineet Katariya; Rodolphe Bernard; Robert A. Holland; A. Hughes; Susannah E. O’Hanlon; Stephen T. Garnett; Çağan H. Şekercioğlu; Georgina M. Mace

Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11–15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.


Conservation Biology | 2008

A Standard Lexicon for Biodiversity Conservation: Unified Classifications of Threats and Actions

Nick Salafsky; Daniel Salzer; Alison J. Stattersfield; Craig Hilton-Taylor; Rachel Neugarten; Stuart H. M. Butchart; Ben Collen; Neil A. Cox; Lawrence L. Master; Sheila O'connor; David Wilkie

An essential foundation of any science is a standard lexicon. Any given conservation project can be described in terms of the biodiversity targets, direct threats, contributing factors at the project site, and the conservation actions that the project team is employing to change the situation. These common elements can be linked in a causal chain, which represents a theory of change about how the conservation actions are intended to bring about desired project outcomes. If project teams want to describe and share their work and learn from one another, they need a standard and precise lexicon to specifically describe each node along this chain. To date, there have been several independent efforts to develop standard classifications for the direct threats that affect biodiversity and the conservation actions required to counteract these threats. Recognizing that it is far more effective to have only one accepted global scheme, we merged these separate efforts into unified classifications of threats and actions, which we present here. Each classification is a hierarchical listing of terms and associated definitions. The classifications are comprehensive and exclusive at the upper levels of the hierarchy, expandable at the lower levels, and simple, consistent, and scalable at all levels. We tested these classifications by applying them post hoc to 1191 threatened bird species and 737 conservation projects. Almost all threats and actions could be assigned to the new classification systems, save for some cases lacking detailed information. Furthermore, the new classification systems provided an improved way of analyzing and comparing information across projects when compared with earlier systems. We believe that widespread adoption of these classifications will help practitioners more systematically identify threats and appropriate actions, managers to more efficiently set priorities and allocate resources, and most important, facilitate cross-project learning and the development of a systematic science of conservation.


Science | 2012

Financial Costs of Meeting Global Biodiversity Conservation Targets: Current Spending and Unmet Needs

Donal P. Mccarthy; Paul F. Donald; Jörn P. W. Scharlemann; Graeme M. Buchanan; Andrew Balmford; Jonathan M.H. Green; Leon Bennun; Neil D. Burgess; Lincoln D. C. Fishpool; Stephen T. Garnett; David L. Leonard; Richard F. Maloney; Paul Morling; H. Martin Schaefer; Andy Symes; David A. Wiedenfeld; Stuart H. M. Butchart

Costs of Conservation In 2010, world governments agreed to a strategic plan for biodiversity conservation, including 20 targets to be met by 2020, through the Convention on Biological Diversity. Discussions on financing the plan have still not been resolved, partly because there is little information on the likely costs of meeting the targets. McCarthy et al. (p. 946, published online 11 October) estimate the financial costs for two of the targets relating to protected areas and preventing extinctions. Using data from birds, they develop models that can be extrapolated to the costs for biodiversity more broadly. Reducing extinction risk for all species is estimated to require in the region of U.S.


Philosophical Transactions of the Royal Society B | 2005

Using Red List Indices to measure progress towards the 2010 target and beyond

Stuart H. M. Butchart; Alison J. Stattersfield; Jonathan E. M. Baillie; Leon Bennun; Simon N. Stuart; H.R. Akçakaya; Craig Hilton-Taylor; Georgina M. Mace

4 billion annually, while the projected costs of establishing and maintaining protected areas may be as much as U.S.

Collaboration


Dive into the Stuart H. M. Butchart's collaboration.

Top Co-Authors

Avatar

Thomas M. Brooks

International Union for Conservation of Nature and Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Graeme M. Buchanan

Royal Society for the Protection of Birds

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Hilton-Taylor

International Union for Conservation of Nature and Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Carlo Rondinini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Neil D. Burgess

World Conservation Monitoring Centre

View shared research outputs
Top Co-Authors

Avatar

Ben Collen

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge