Alison L. Greenway
Burnet Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alison L. Greenway.
Science | 1995
Nicholas J. Deacon; A. Tsykin; Ajantha Solomon; K. Smith; M. Ludford-Menting; David J. Hooker; Dale A. McPhee; Alison L. Greenway; Anne Ellett; Catherine Chatfield; Victoria A. Lawson; Suzanne M. Crowe; Anne L. Maerz; Secondo Sonza; Jenny Learmont; John S. Sullivan; Anthony L. Cunningham; Dominic E. Dwyer; D. Dowton; John Mills
A blood donor infected with human immunodeficiency virus-type 1 (HIV-1) and a cohort of six blood or blood product recipients infected from this donor remain free of HIV-1-related disease with stable and normal CD4 lymphocyte counts 10 to 14 years after infection. HIV-1 sequences from either virus isolates or patient peripheral blood mononuclear cells had similar deletions in the nef gene and in the region of overlap of nef and the U3 region of the long terminal repeat (LTR). Full-length sequencing of one isolate genome and amplification of selected HIV-1 genome regions from other cohort members revealed no other abnormalities of obvious functional significance. These data show that survival after HIV infection can be determined by the HIV genome and support the importance of nef or the U3 region of the LTR in determining the pathogenicity of HIV-1.
Journal of Virology | 2002
Alison L. Greenway; Dale A. McPhee; Ricky W. Johnstone; Gavan Holloway; John Mills; Ahmed A. Azad; Sonia Sankovich; Paul F. Lambert
ABSTRACT The nef gene product of human immunodeficiency virus type 1 (HIV-1) is important for the induction of AIDS, and key to its function is its ability to manipulate T-cell function by targeting cellular signal transduction proteins. We reported that Nef coprecipitates a multiprotein complex from cells which contains tumor suppressor protein p53. We now show that Nef interacts directly with p53. Binding assays showed that an N-terminal, 57-residue fragment of Nef (Nef 1-57) contains the p53-binding domain. Nef also interacted with p53 during HIV-1 infection in vitro. As p53 plays a critical role in the regulation of apoptosis, we hypothesized that Nef may alter this process. Nef inhibited UV light-induced, p53-dependent apoptosis in MOLT-4 cells, with Nef 1-57 being as effective as its full-length counterpart. The inhibition by Nef of p53 apoptotic function is most likely due its observed ability to decrease p53 protein half-life and, consequently, p53 DNA binding activity and transcriptional activation. These data show that HIV-1 Nef may augment HIV replication by prolonging the viability of infected cells by blocking p53-mediated apoptosis.
Oncogene | 2000
Ricky W. Johnstone; Wu Wei; Alison L. Greenway; Joseph A. Trapani
Interferons are important in regulating cell growth and differentiation, immune function and initiating anti-viral responses. While the pleotrophic actions of interferons have been well documented, the molecular mechanisms underpinning their biological effects have not been fully characterized. IFI 16 is a member of the interferon-inducible HIN-200 family of nuclear proteins, which we have recently shown can function as a potent transcriptional repressor. A murine member of the HIN-200 family, p202, can indirectly interact with p53 via the p53 binding protein (p53bp) and inhibit p53-mediated transcriptional activation. The binding activity of p202 to p53bp was shown to require the conserved MFHATVAT motif present in all 200 amino acid repeat regions of HIN-200 proteins. Given that IFI 16 contains two MFHATVAT motifs, we sought to determine whether IFI 16 may form a complex with p53 and if so to ascertain the functional significance of this interaction. We demonstrate that IFI 16 can directly bind to the C-terminal region of p53 and augment p53-mediated transcriptional activation without altering the steady state levels of p53. Thus, in addition to its ability to directly regulate gene expression, IFI 16 can also modulate the transcription function of other cellular transcription factors. These findings demonstrate a possible link between gene induction following interferon stimulation and p53-mediated cellular events.
Journal of Biosciences | 2003
Alison L. Greenway; Gavan Holloway; Dale A. McPhee; Phoebe Ellis; Alyssa Cornall; Michael Lidman
HIV-1 has at its disposal numerous proteins encoded by its genome which provide the required arsenal to establish and maintain infection in its host for a considerable number of years. One of the most important and enigmatic of these proteins is Nef. The Nef protein of HIV-1 plays a fundamental role in the virus life cycle. This small protein of approximately 27 kDa is required for maximal virus replication and disease progression. The mechanisms by which it is able to act as a positive factor during virus replication is an area of intense research and although some controversy surrounds Nef much has been gauged as to how it functions. Its ability to modulate the expression of key cellular receptors important for cell activation and control signal transduction elements and events by interacting with numerous cellular kinases and signalling molecules, including members of the Src family kinases, leading to an effect on host cell function is likely to explain at least in part its role during infection and represents a finely tuned mechanism where this protein assists HIV-1 to control its host.
Virology | 2003
Megan G Waldhuber; Michael Bateson; Judith Tan; Alison L. Greenway; Dale A McPhee
The human immunodeficiency virus type 1 (HIV-1) Vpr protein is known to arrest the cell cycle in G(2)/M and induce apoptosis following arrest. The functions of Vpr relative to its location in the cell remain unresolved. We now demonstrate that the location and function of Vpr are dependent on the makeup of fusion proteins and that the functions of G(2)/M arrest and apoptosis are separable. Using green fluorescence protein mutants (EGFP or EYFP), we found that fusion at either the N- or C-terminus compromised the ability of Vpr to arrest cell cycling, relative to that of His-Vpr or wild-type protein. Additionally, utilizing the ability to specifically identify cells expressing the fusion proteins, we confirm that Vpr can induce apoptosis, but appears to be independent of cell-cycle arrest in G(2)/M. Both N- and C-terminal Vpr/EYFP fusion proteins induced apoptosis but caused minimal G(2)/M arrest. These studies with Vpr fusion proteins indicate that the functions of Vpr leading to G(2)/M arrest and apoptosis are separable and that fusion of Vpr to EGFP or EYFP affected the localization of the protein. Our findings suggest that nuclear membrane localization and nuclear import and export are strongly governed by modification of the N-terminus of Vpr.
AIDS | 1998
Alison L. Greenway; John Mills; David I. Rhodes; Nicholas J. Deacon; Dale A. McPhee
Objective:To investigate whether members of a transfusion-linked cohort (the Sydney Bloodbank Cohort) infected with a nef-deleted strain of HIV-1 could be differentiated from individuals infected with wild-type strains of HIV-1 by characterizing the Nef antibody response of cohort members. Design:Retrospective and prospective analysis of the nef gene sequence and the antibody response to Nef peptides in HIV-infected subjects. Methods:Plasma was obtained from all individuals of the Sydney cohort, and from a variety of HIV-1-infected and uninfected controls. Antibodies recognizing full-length recombinant HIV-1NL43 Nef protein and synthetic peptide analogues were assessed by enzyme-linked immunosorbent assay. Results:All 34 individuals infected with wild-type HIV-1 had antibodies reacting with full-length Nef protein as well as with a series of synthetic peptides (6–23-mers) spanning most of the Nef protein of HIV-1NL43. Although the HIV-1 quasispecies infecting the Sydney cohort had a consensus deletion of the nef gene corresponding to amino-acids 165–206, HIV-1 strains from individual members of the cohort had additional deletions comprising up to 80% of the nef gene. Members of the cohort had antibodies to peptides homologous to all regions of the Nef protein tested, except for a single peptide (amino-acids 162–177) that lies within the consensus nef deletion for the cohort quasispecies. Conclusion:These data show that nef-deleted strains of HIV-1 can be detected serologically. In the Sydney cohort, detection of antibodies to all regions of Nef tested, except that corresponding to amino-acids 162–177, suggests that observed deletions outside this domain occurred after this virus had infected these subjects and stimulated an immune response. A Nef peptide serological assay may be useful for identifying further examples of individuals infected with nef-deleted, attenuated HIV-1 quasispecies and for assessing the evolution of those variants in vivo.
AIDS | 2001
Katherine Kedzierska; Johnson Mak; Anthony Jaworowski; Alison L. Greenway; Antoniette Violo; Hiutat Chan; Jane S. Hocking; Damian F. J. Purcell; John S. Sullivan; John Mills; Suzanne M. Crowe
ObjectiveHIV-1 infection impairs a number of macrophage effector functions, but the mechanism is unknown. We studied the role of HIV-1 Nef in modulating phagocytosis by human monocytes and monocyte-derived macrophages (MDM). Design and methodsUsing a flow cytometric assay, phagocytosis of Mycobacterium avium complex (MAC) by monocytes in whole blood of Sydney Blood Bank Cohort (SBBC) members infected with a nef-deleted (Δnef) strain of HIV-1 was compared with that of monocytes from uninfected or wild-type (WT) HIV-infected subjects. The specific impact of Nef on phagocytosis by MDM was determined by either infecting cells in vitro with Δnef strains of HIV-1 or electroporating Nef into uninfected MDM. ResultsMAC phagocytic capacity of monocytes from SBBC members was equivalent to that of cells from uninfected individuals (P = 0.81); it was greater than that of cells from individuals infected with WT HIV-1 (P < 0.0001), irrespective of CD4 counts and HIV viral load. In contrast, in vitro infection of MDM with either Δnef or WT strains of HIV-1 resulted in similar levels of HIV replication and equivalent impairment of phagocytosis via Fcγ and complement receptors. Electroporation of Nef into MDM did not alter phagocytic capacity. ConclusionsThis study provides evidence demonstrating the complex indirect effect of Nef on phagocytosis by peripheral blood monocytes (infrequently infected with HIV-1) in vivo. Conversely, the fact that MDM infected with either Δnef or WT HIV-1 in vitro (high multiplicity of infection) show comparably impaired phagocytosis, indicates that HIV-1 infection of macrophages can directly impair function, independent of Nef.
Journal of NeuroVirology | 1998
Dale A. McPhee; Alison L. Greenway; Gavan Holloway; Karen Müller Smith; Nick Deacon; Louise Pemberton; Bruce J. Brew
In determining levels of expression of HIV-1 Nef protein within the central nervous system (CNS) we assessed antibody responses to the protein both peripherally and in CNS. Antibodies to Nef were not detected within the CNS despite detection of antibodies to both gp41 and Nef in peripheral blood and representative virus isolates derived from CNS and peripheral blood (PB) samples containing full length nef sequence and virus-infected cells expressing Nef protein. We conclude from this that expression of Nef within the CNS is such that little or no antibody production occurs and that these differences indicate that Nef protein may not be directly contributing to the AIDS dementia complex. Expression of Nef protein in PHA-activated peripheral blood mononuclear cells from CNS derived isolates was different to that of coincidental PB derived isolates in that partial surface expression was observed for the latter. The results suggest that antigenic presentation of Nef within the CNS is anomalous and that Nef protein expression, at least for the limited number of in vitro derived isolates tested, has a different localization pattern.
Viruses | 2013
Alyssa M. Cornall; Johnson Mak; Alison L. Greenway; Gilda Tachedjian
The proline repeat motif (PxxP) of Nef is required for interaction with the SH3 domains of macrophage-specific Src kinase Hck. However, the implication of this interaction for viral replication and infectivity in macrophages and T lymphocytes remains unclear. Experiments in HIV-1 infected macrophages confirmed the presence of a Nef:Hck complex which was dependent on the Nef proline repeat motif. The proline repeat motif of Nef also enhanced both HIV-1 infection and replication in macrophages, and was required for incorporation of Hck into viral particles. Unexpectedly, wild-type Hck inhibited infection of macrophages, but Hck was shown to enhance infection of primary T lymphocytes. These results indicate that the interaction between Nef and Hck is important for Nef-dependent modulation of viral infectivity. Hck-dependent enhancement of HIV-1 infection of T cells suggests that Nef-Hck interaction may contribute to the spread of HIV-1 infection from macrophages to T cells by modulating events in the producer cell, virion and target cell.
Journal of Virology | 1996
Alison L. Greenway; Ahmed A. Azad; John Mills; Dale A. McPhee
Collaboration
Dive into the Alison L. Greenway's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs