Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gavan Holloway is active.

Publication


Featured researches published by Gavan Holloway.


PLOS Pathogens | 2010

The Type III Effectors NleE and NleB from Enteropathogenic E. coli and OspZ from Shigella Block Nuclear Translocation of NF-κB p65

Hayley J. Newton; Jaclyn S. Pearson; Luminita Badea; Michelle Kelly; Mark Lucas; Gavan Holloway; Kylie M. Wagstaff; Michelle Anne Dunstone; Joan Sloan; James C. Whisstock; James B. Kaper; Roy M. Robins-Browne; David A. Jans; Gad Frankel; Alan D. Phillips; Barbara S. Coulson; Elizabeth L. Hartland

Many bacterial pathogens utilize a type III secretion system to deliver multiple effector proteins into host cells. Here we found that the type III effectors, NleE from enteropathogenic E. coli (EPEC) and OspZ from Shigella, blocked translocation of the p65 subunit of the transcription factor, NF-κB, to the host cell nucleus. NF-κB inhibition by NleE was associated with decreased IL-8 expression in EPEC-infected intestinal epithelial cells. Ectopically expressed NleE also blocked nuclear translocation of p65 and c-Rel, but not p50 or STAT1/2. NleE homologues from other attaching and effacing pathogens as well OspZ from Shigella flexneri 6 and Shigella boydii, also inhibited NF-κB activation and p65 nuclear import; however, a truncated form of OspZ from S. flexneri 2a that carries a 36 amino acid deletion at the C-terminus had no inhibitory activity. We determined that the C-termini of NleE and full length OspZ were functionally interchangeable and identified a six amino acid motif, IDSY(M/I)K, that was important for both NleE- and OspZ-mediated inhibition of NF-κB activity. We also established that NleB, encoded directly upstream from NleE, suppressed NF-κB activation. Whereas NleE inhibited both TNFα and IL-1β stimulated p65 nuclear translocation and IκB degradation, NleB inhibited the TNFα pathway only. Neither NleE nor NleB inhibited AP-1 activation, suggesting that the modulatory activity of the effectors was specific for NF-κB signaling. Overall our data show that EPEC and Shigella have evolved similar T3SS-dependent means to manipulate host inflammatory pathways by interfering with the activation of selected host transcriptional regulators.


Journal of Virology | 2002

Human Immunodeficiency Virus Type 1 Nef Binds to Tumor Suppressor p53 and Protects Cells against p53-Mediated Apoptosis

Alison L. Greenway; Dale A. McPhee; Ricky W. Johnstone; Gavan Holloway; John Mills; Ahmed A. Azad; Sonia Sankovich; Paul F. Lambert

ABSTRACT The nef gene product of human immunodeficiency virus type 1 (HIV-1) is important for the induction of AIDS, and key to its function is its ability to manipulate T-cell function by targeting cellular signal transduction proteins. We reported that Nef coprecipitates a multiprotein complex from cells which contains tumor suppressor protein p53. We now show that Nef interacts directly with p53. Binding assays showed that an N-terminal, 57-residue fragment of Nef (Nef 1-57) contains the p53-binding domain. Nef also interacted with p53 during HIV-1 infection in vitro. As p53 plays a critical role in the regulation of apoptosis, we hypothesized that Nef may alter this process. Nef inhibited UV light-induced, p53-dependent apoptosis in MOLT-4 cells, with Nef 1-57 being as effective as its full-length counterpart. The inhibition by Nef of p53 apoptotic function is most likely due its observed ability to decrease p53 protein half-life and, consequently, p53 DNA binding activity and transcriptional activation. These data show that HIV-1 Nef may augment HIV replication by prolonging the viability of infected cells by blocking p53-mediated apoptosis.


Journal of Virology | 2006

Rotavirus Activates JNK and p38 Signaling Pathways in Intestinal Cells, Leading to AP-1-Driven Transcriptional Responses and Enhanced Virus Replication

Gavan Holloway; Barbara S. Coulson

ABSTRACT Rotavirus infection is known to regulate transcriptional changes in many cellular genes. The transcription factors NF-κB and AP-1 are activated by rotavirus infection, but the upstream processes leading to these events are largely unidentified. We therefore studied the activation state during rotavirus infection of c-Jun NH2-terminal kinase (JNK) and p38, which are kinases known to activate AP-1. As assessed by Western blotting using phospho-specific antibodies, infection with rhesus rotavirus (RRV) or exposure to UV-psoralen-inactivated RRV (I-RRV) resulted in the activation of JNK in HT-29, Caco-2, and MA104 cells. Activation of p38 during RRV infection was observed in Caco-2 and MA104 cells but not in HT-29 cells, whereas exposure to I-RRV did not lead to p38 activation in these cell lines. Rotavirus strains SA11, CRW-8, Wa, and UK also activated JNK and p38. Consistent with the activation of JNK, a corresponding increase in the phosphorylation of the AP-1 component c-Jun was shown. The interleukin-8 (IL-8) and c-jun promoters contain AP-1 binding sequences, and these genes have been shown previously to be transcriptionally up-regulated during rotavirus infection. Using specific inhibitors of JNK (SP600125) and p38 (SB203580) and real-time PCR, we showed that maximal RRV-induced IL-8 and c-jun transcription required JNK and p38 activity. This highlights the importance of JNK and p38 in RRV-induced, AP-1-driven gene expression. Significantly, inhibition of p38 or JNK in Caco-2 cells reduced RRV growth but not viral structural antigen expression, demonstrating the potential importance of JNK and p38 activation for optimal rotavirus replication.


Journal of Virology | 2009

Rotavirus Antagonizes Cellular Antiviral Responses by Inhibiting the Nuclear Accumulation of STAT1, STAT2, and NF-κB

Gavan Holloway; Thanhmai T. Truong; Barbara S. Coulson

ABSTRACT A vital arm of the innate immune response to viral infection is the induction and subsequent antiviral effects of interferon (IFN). Rotavirus reduces type I IFN induction in infected cells by the degradation of IFN regulatory factors. Here, we show that the monkey rotavirus RRV and human rotavirus Wa also block gene expression induced by type I and II IFNs through a mechanism allowing signal transducer and activator of transcription 1 (STAT1) and STAT2 activation but preventing their nuclear accumulation. In infected cells, this may allow rotavirus to block the antiviral actions of IFN produced early in infection or by activated immune cells. As the intracellular expression of rotavirus nonstructural proteins NSP1, NSP3, and NSP4 individually did not inhibit IFN-stimulated gene expression, their involvement in this process is unlikely. RRV and Wa rotaviruses also prevented the tumor necrosis factor alpha-stimulated nuclear accumulation of NF-κB and NF-κB-driven gene expression. In addition, NF-κB was activated by rotavirus infection, confirming earlier findings by others. As NF-κB is important for the induction of IFN and other cytokines during viral infection, this suggests that rotavirus prevents cellular transcription as a means to evade host responses. To our knowledge, this is the first report of the use of this strategy by a double-stranded RNA virus.


Journal of General Virology | 2013

Innate cellular responses to rotavirus infection.

Gavan Holloway; Barbara S. Coulson

Rotavirus is a leading cause of severe dehydrating diarrhoea in infants and young children. Following rotavirus infection in the intestine an innate immune response is rapidly triggered. This response leads to the induction of type I and type III interferons (IFNs) and other cytokines, resulting in a reduction in viral replication. Here we review the current literature describing the detection of rotavirus infection by pattern recognition receptors within host cells, the subsequent molecular mechanisms leading to IFN and cytokine production, and the processes leading to reduced rotavirus replication and the development of protective immunity. Rotavirus countermeasures against innate responses, and their roles in modulating rotavirus replication in mice, also are discussed. By linking these different aspects of innate immunity, we provide a comprehensive overview of the hosts first line of defence against rotavirus infection. Understanding these processes is expected to be of benefit in improving strategies to combat rotavirus disease.


Journal of Virology | 2008

Rotavirus Replication in Intestinal Cells Differentially Regulates Integrin Expression by a Phosphatidylinositol 3-Kinase-Dependent Pathway, Resulting in Increased Cell Adhesion and Virus Yield

Peter Halasz; Gavan Holloway; Stephen J. Turner; Barbara S. Coulson

ABSTRACT Changes in the interactions between intestinal cells and their surrounding environment during virus infection have not been well documented. The growth and survival of intestinal epithelial cells, the main targets of rotavirus infection, are largely dependent on the interaction of cell surface integrins with the extracellular matrix. In this study, we detected alterations in cellular integrin expression following rotavirus infection, identified the signaling components required, and analyzed the subsequent effects on cell binding to the matrix component collagen. After rotavirus infection of intestinal cells, expression of α2β1 and β2 integrins was up-regulated, whereas that of αVβ3, αVβ5, and α5β1 integrins, if present, was down-regulated. This differential regulation of integrins was reflected at the transcriptional level. It was unrelated to the use of integrins as rotavirus receptors, as both integrin-using and integrin-independent viruses induced integrin regulation. Using pharmacological agents that inhibit kinase activity, integrin regulation was shown to be dependent on phosphatidylinositol 3-kinase (PI3K) but independent of the activities of the mitogen-activated protein kinases p38 and ERK1/2, and cyclooxygenase-2. Replication-dependent activation of the PI3K/Akt pathway was observed following infection of intestinal and nonintestinal cell lines. Rotavirus activation of PI3K was important for regulation of α2β1 expression. Blockade of integrin regulation by PI3K inhibition led to decreased adherence of infected intestinal cells to collagen and a concomitant decrease in virus titer. These findings indicate that rotavirus-induced PI3K activation causes regulation of integrin expression in intestinal cells, leading to prolonged adherence of infected cells to collagen and increased virus production.


Nature Communications | 2015

Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion

Raphael Böhm; Fiona E. Fleming; Andrea Maggioni; Vi T. Dang; Gavan Holloway; Barbara S. Coulson; Mark von Itzstein; Thomas Erwin Haselhorst

Histo-blood group antigens (HBGAs) have been proposed as rotavirus receptors. H type-1 and Lewis(b) antigens have been reported to bind VP8* from major human rotavirus genotypes P[4], P[6] and P[8], while VP8* from a rarer P[14] rotavirus recognizes A-type HBGAs. However, the role and significance of HBGA receptors in rotavirus pathogenesis remains uncertain. Here we report that P[14] rotavirus HAL1166 and the related P[9] human rotavirus K8 bind to A-type HBGAs, although neither virus engages the HBGA-specific α1,2-linked fucose moiety. Notably, human rotaviruses DS-1 (P[4]) and RV-3 (P[6]) also use A-type HBGAs for infection, with fucose involvement. However, human P[8] rotavirus Wa does not recognize A-type HBGAs. Furthermore, the common human rotaviruses that we have investigated do not use Lewis(b) and H type-1 antigens. Our results indicate that A-type HBGAs are receptors for human rotaviruses, although rotavirus strains vary in their ability to recognize these antigens.


Journal of Virology | 2014

Relative roles of GM1 ganglioside, N-acylneuraminic acids, and α2β1 integrin in mediating rotavirus infection.

Fiona E. Fleming; Raphael Böhm; Vi T. Dang; Gavan Holloway; Thomas Erwin Haselhorst; Paul David Madge; Jaigeeth Deveryshetty; Xing Yu; Helen Blanchard; Mark von Itzstein; Barbara S. Coulson

ABSTRACT N-acetyl- and N-glycolylneuraminic acids (Sia) and α2β1 integrin are frequently used by rotaviruses as cellular receptors through recognition by virion spike protein VP4. The VP4 subunit VP8*, derived from Wa rotavirus, binds the internal N-acetylneuraminic acid on ganglioside GM1. Wa infection is increased by enhanced internal Sia access following terminal Sia removal from main glycan chains with sialidase. The GM1 ligand cholera toxin B (CTB) reduces Wa infectivity. Here, we found sialidase treatment increased cellular GM1 availability and the infectivity of several other human (including RV-3) and animal rotaviruses, typically rendering them susceptible to methyl α-d-N-acetylneuraminide treatment, but did not alter α2β1 usage. CTB reduced the infectivity of these viruses. Aceramido-GM1 inhibited Wa and RV-3 infectivity in untreated and sialidase-treated cells, and GM1 supplementation increased their infectivity, demonstrating the importance of GM1 for infection. Wa recognition of α2β1 and internal Sia were at least partially independent. Rotavirus usage of GM1 was mapped to VP4 using virus reassortants, and RV-3 VP8* bound aceramido-GM1 by saturation transfer difference nuclear magnetic resonance (STD NMR). Most rotaviruses recognizing terminal Sia did not use GM1, including RRV. RRV VP8* interacted minimally with aceramido-GM1 by STD NMR. Unusually, TFR-41 rotavirus infectivity depended upon terminal Sia and GM1. Competition of CTB, Sia, and/or aceramido-GM1 with cell binding by VP8* from representative rotaviruses showed that rotavirus Sia and GM1 preferences resulted from VP8*-cell binding. Our major finding is that infection by human rotaviruses of commonly occurring VP4 serotypes involves VP8* binding to cell surface GM1 glycan, typically including the internal N-acetylneuraminic acid. IMPORTANCE Rotaviruses, the major cause of severe infantile gastroenteritis, recognize cell surface receptors through virus spike protein VP4. Several animal rotaviruses are known to bind sialic acids at the termini of main carbohydrate chains. Conversely, only a single human rotavirus is known to bind sialic acid. Interestingly, VP4 of this rotavirus bound to sialic acid that forms a branch on the main carbohydrate chain of the GM1 ganglioside. Here, we use several techniques to demonstrate that other human rotaviruses exhibit similar GM1 usage properties. Furthermore, binding by VP4 to cell surface GM1, involving branched sialic acid recognition, is shown to facilitate infection. In contrast, most animal rotaviruses that bind terminal sialic acids did not utilize GM1 for VP4 cell binding or infection. These studies support a significant role for GM1 in mediating host cell invasion by human rotaviruses.


Journal of General Virology | 2010

Death mechanisms in epithelial cells following rotavirus infection, exposure to inactivated rotavirus or genome transfection

Peter Halasz; Gavan Holloway; Barbara S. Coulson

Intestinal epithelial cell death following rotavirus infection is associated with villus atrophy and gastroenteritis. Roles for both apoptosis and necrosis in cytocidal activity within rotavirus-infected epithelial cells have been proposed. Additionally, inactivated rotavirus has been reported to induce diarrhoea in infant mice. We further examined the death mechanisms induced in epithelial cell lines following rotavirus infection or inactivated rotavirus exposure. Monolayer integrity changes in MA104, HT-29 and partially differentiated Caco-2 cells following inactivated rotavirus exposure or RRV or CRW-8 rotavirus infection paralleled cell metabolic activity and viability reductions. MA104 cell exposure to rotavirus dsRNA also altered monolayer integrity. Inactivated rotaviruses induced delayed cell function losses that were unrelated to apoptosis. Phosphatidylserine externalization, indicating early apoptosis, occurred in MA104 and HT-29 but not in partially differentiated Caco-2 cells by 11 h after infection. Rotavirus activation of phosphatidylinositol 3-kinase partially protected MA104 and HT-29 cells from early apoptosis. In contrast, activation of the stress-activated protein kinase JNK by rotavirus did not influence apoptosis induction in these cells. RRV infection produced DNA fragmentation, indicating late-stage apoptosis, in fully differentiated Caco-2 cells only. These studies show that the apoptosis initiation and cell death mechanism induced by rotavirus infection depend on cell type and degree of differentiation. Early stage apoptosis resulting from rotavirus infection is probably counter-balanced by virus-induced phosphatidylinositol 3-kinase activation. The ability of inactivated rotaviruses and rotavirus dsRNA to perturb monolayer integrity supports a potential role for these rotavirus components in disease pathogenesis.


Diabetologia | 2013

Rotavirus acceleration of murine type 1 diabetes is associated with a T helper 1-dependent specific serum antibody response and virus effects in regional lymph nodes.

Jessica A. Pane; Nicole L. Webster; Kate L. Graham; Gavan Holloway; Christel Zufferey; Barbara S. Coulson

Aims/hypothesisRotavirus infection in at-risk children correlates with production of serum autoantibodies indicative of type 1 diabetes progression. Oral infection with rhesus monkey rotavirus (RRV) accelerates diabetes onset in mice. This relates to their rotavirus-specific serum antibody titre and local pro-inflammatory cytokine induction without pancreatic infection. Our aim was to further investigate the roles of serum antibodies and viral extra-intestinal spread in diabetes acceleration by rotavirus.MethodsRotavirus-specific serum antibody production was detected by ELISA in diabetes-prone mice given either inactivated or low-dose RRV, in relation to their diabetes development. Serum anti-rotavirus antibody titres and infectious virus in lymph nodes were measured in mice given RRV or porcine rotavirus CRW-8. In lymph node cells, rotavirus antigen presence and immune activation were determined by flow cytometry, in conjunction with cytokine mRNA levels.ResultsAcceleration of diabetes by RRV required virus replication, which correlated with antibody presence. CRW-8 induced similar specific total immunoglobulin and IgA titres to those induced by RRV, but did not accelerate diabetes. RRV alone elicited specific serum IgG antibodies with a T helper (Th)1 bias, spread to regional lymph nodes and activated antigen-presenting cells at these sites. RRV increased Th1-specific cytokine expression in pancreatic lymph nodes. Diabetes onset was more rapid in the RRV-infected mice with the greater Th1 bias.Conclusions/interpretationAcceleration of murine diabetes by rotavirus is virus strain-specific and associated with virus spread to regional lymph nodes, activation of antigen-presenting cells at these sites and induction of a Th1-dominated antibody and cytokine response.

Collaboration


Dive into the Gavan Holloway's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vi T. Dang

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge