Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alison Yeung is active.

Publication


Featured researches published by Alison Yeung.


Journal of Medical Genetics | 2010

Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes

Damien L. Bruno; Britt Marie Anderlid; Anna Lindstrand; Conny M. A. van Ravenswaaij-Arts; Devika Ganesamoorthy; Johanna Lundin; Christa Lese Martin; Jessica Douglas; Catherine Nowak; Margaret P Adam; R. Frank Kooy; Nathalie Van der Aa; Edwin Reyniers; Geert Vandeweyer; Irene Stolte-Dijkstra; Trijnie Dijkhuizen; Alison Yeung; Martin B. Delatycki; Birgit Borgström; Lena Thelin; Carlos Cardoso; Bregje W.M. van Bon; Rolph Pfundt; Bert B.A. de Vries; Anders Wallin; David J. Amor; Paul A. James; Howard R. Slater; Jacqueline Schoumans

Background Chromosome 17p13.3 contains extensive repetitive sequences and is a recognised region of genomic instability. Haploinsufficiency of PAFAH1B1 (encoding LIS1) causes either isolated lissencephaly sequence or Miller–Dieker syndrome, depending on the size of the deletion. More recently, both microdeletions and microduplications mapping to the Miller–Dieker syndrome telomeric critical region have been identified and associated with distinct but overlapping phenotypes. Methods Genome-wide microarray screening was performed on 7678 patients referred with unexplained learning difficulties and/or autism, with or without other congenital abnormalities. Eight and five unrelated individuals, respectively, were identified with microdeletions and microduplications in 17p13.3. Results Comparisons with six previously reported microdeletion cases identified a 258 kb critical region, encompassing six genes including CRK (encoding Crk) and YWHAE (encoding 14-3-3ε). Clinical features included growth retardation, facial dysmorphism and developmental delay. Notably, one individual with only subtle facial features and an interstitial deletion involving CRK but not YWHAE suggested that a genomic region spanning 109 kb, encompassing two genes (TUSC5 and YWHAE), is responsible for the main facial dysmorphism phenotype. Only the microduplication phenotype included autism. The microduplication minimal region of overlap for the new and previously reported cases spans 72 kb encompassing a single gene, YWHAE. These genomic rearrangements were not associated with low-copy repeats and are probably due to diverse molecular mechanisms. Conclusions The authors further characterise the 17p13.3 microdeletion and microduplication phenotypic spectrum and describe a smaller critical genomic region allowing identification of candidate genes for the distinctive facial dysmorphism (microdeletions) and autism (microduplications) manifestations.


Genetics in Medicine | 2016

A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders.

Zornitza Stark; Tiong Yang Tan; Belinda Chong; Gemma R. Brett; Patrick Yap; Maie Walsh; Alison Yeung; Heidi Peters; Dylan Mordaunt; Shannon Cowie; David J. Amor; Ravi Savarirayan; George McGillivray; Lilian Downie; Paul G. Ekert; Christiane Theda; Paul A. James; Joy Yaplito-Lee; Monique M. Ryan; Richard J. Leventer; Emma Creed; Ivan Macciocca; Katrina M. Bell; Alicia Oshlack; Simon Sadedin; Peter Georgeson; Charlotte Anderson; Natalie P. Thorne; Clara Gaff; Susan M. White

Purpose:To prospectively evaluate the diagnostic and clinical utility of singleton whole-exome sequencing (WES) as a first-tier test in infants with suspected monogenic disease.Methods:Singleton WES was performed as a first-tier sequencing test in infants recruited from a single pediatric tertiary center. This occurred in parallel with standard investigations, including single- or multigene panel sequencing when clinically indicated. The diagnosis rate, clinical utility, and impact on management of singleton WES were evaluated.Results:Of 80 enrolled infants, 46 received a molecular genetic diagnosis through singleton WES (57.5%) compared with 11 (13.75%) who underwent standard investigations in the same patient group. Clinical management changed following exome diagnosis in 15 of 46 diagnosed participants (32.6%). Twelve relatives received a genetic diagnosis following cascade testing, and 28 couples were identified as being at high risk of recurrence in future pregnancies.Conclusions:This prospective study provides strong evidence for increased diagnostic and clinical utility of singleton WES as a first-tier sequencing test for infants with a suspected monogenic disorder. Singleton WES outperformed standard care in terms of diagnosis rate and the benefits of a diagnosis, namely, impact on management of the child and clarification of reproductive risks for the extended family in a timely manner.Genet Med 18 11, 1090–1096.


Journal of Medical Genetics | 2008

Detection of cryptic pathogenic copy number variations and constitutional loss of heterozygosity using high resolution SNP microarray analysis in 117 patients referred for cytogenetic analysis and impact on clinical practice

Damien L. Bruno; Devika Ganesamoorthy; Jacqueline Schoumans; Agnes Bankier; David Coman; Martin B. Delatycki; R. J. M. Gardner; Matthew Hunter; Paul A. James; Peter Kannu; George McGillivray; Nicholas Pachter; Heidi Peters; Claudine Rieubland; Ravi Savarirayan; Ingrid E. Scheffer; Leslie J. Sheffield; Tiong Yang Tan; Susan M. White; Alison Yeung; Z Bowman; C Ngo; Kwong Wai Choy; V Cacheux; Lee H. Wong; David J. Amor; Howard R. Slater

Background: Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. Methods: Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. Results: 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as “potentially pathogenic”. Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. Conclusions: Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered “new syndromes” were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype–phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.


European Journal of Medical Genetics | 2009

4.45 Mb microduplication in chromosome band 14q12 including FOXG1 in a girl with refractory epilepsy and intellectual impairment.

Alison Yeung; Damien L. Bruno; Ingrid E. Scheffer; Daniel Carranza; Trent Burgess; Howard R. Slater; David J. Amor

Microdeletions at 14q12 that include FOXG1, or loss of function mutations in FOXG1, are associated with the congenital variant of Rett syndrome. By SNP microarray analysis we identified a corresponding microduplication at 14q12 in a nine year old girl with symptomatic generalised epilepsy, severe intellectual impairment, and minor dysmorphisms, but without microcephaly. The 14q12 microduplication comprised 4.45 Mb of DNA and included FOXG1. This is the first report of duplication involving FOXG1 and suggests a dosage sensitive role for FOXG1 in brain development.


JAMA Pediatrics | 2017

Diagnostic Impact and Cost-effectiveness of Whole-Exome Sequencing for Ambulant Children With Suspected Monogenic Conditions

Tiong Yang Tan; Oliver James Dillon; Zornitza Stark; Deborah Schofield; Khurshid Alam; Rupendra Shrestha; Belinda Chong; Dean Phelan; Gemma R. Brett; Emma Creed; Anna Jarmolowicz; Patrick Yap; Maie Walsh; Lilian Downie; David J. Amor; Ravi Savarirayan; George McGillivray; Alison Yeung; Heidi Peters; Susan J. Robertson; Aaron J Robinson; Ivan Macciocca; Simon Sadedin; Katrina M. Bell; Alicia Oshlack; Peter Georgeson; Natalie P. Thorne; Clara Gaff; Susan M. White

Importance Optimal use of whole-exome sequencing (WES) in the pediatric setting requires an understanding of who should be considered for testing and when it should be performed to maximize clinical utility and cost-effectiveness. Objectives To investigate the impact of WES in sequencing-naive children suspected of having a monogenic disorder and evaluate its cost-effectiveness if WES had been available at different time points in their diagnostic trajectory. Design, Setting, and Participants This prospective study was part of the Melbourne Genomics Health Alliance demonstration project. At the ambulatory outpatient clinics of the Victorian Clinical Genetics Services at the Royal Children’s Hospital, Melbourne, Australia, children older than 2 years suspected of having a monogenic disorder were prospectively recruited from May 1 through November 30, 2015, by clinical geneticists after referral from general and subspecialist pediatricians. All children had nondiagnostic microarrays and no prior single-gene or panel sequencing. Exposures All children underwent singleton WES with targeted phenotype-driven analysis. Main Outcomes and Measures The study examined the clinical utility of a molecular diagnosis and the cost-effectiveness of alternative diagnostic trajectories, depending on timing of WES. Results Of 61 children originally assessed, 44 (21 [48%] male and 23 [52%] female) aged 2 to 18 years (mean age at initial presentation, 28 months; range, 0-121 months) were recruited, and a diagnosis was achieved in 23 (52%) by singleton WES. The diagnoses were unexpected in 8 of 23 (35%), and clinical management was altered in 6 of 23 (26%). The mean duration of the diagnostic odyssey was 6 years, with each child having a mean of 19 tests and 4 clinical genetics and 4 nongenetics specialist consultations, and 26 (59%) underwent a procedure while under general anesthetic for diagnostic purposes. Economic analyses of the diagnostic trajectory identified that WES performed at initial tertiary presentation resulted in an incremental cost savings of A


British Journal of Obstetrics and Gynaecology | 2013

Meeting the challenge of interpreting high‐resolution single nucleotide polymorphism array data in prenatal diagnosis: does increased diagnostic power outweigh the dilemma of rare variants?

Devika Ganesamoorthy; Damien L. Bruno; George McGillivray; Fiona Norris; Susan M. White; S Adroub; David J. Amor; Alison Yeung; Ralph Oertel; Pertile; C Ngo; Ar Arvaj; Susan P. Walker; P. Charan; Ricardo Palma-Dias; Nicole Woodrow; Howard R. Slater

9020 (US


American Journal of Medical Genetics Part A | 2009

Familial upper eyelid coloboma with ipsilateral anterior hairline abnormality: Two new reports of MOTA syndrome†

Alison Yeung; David J. Amor; Ravi Savarirayan

6838) per additional diagnosis (95% CI, A


American Journal of Medical Genetics Part A | 2009

Pallister-Killian syndrome caused by mosaicism for a supernumerary ring chromosome 12p.

Alison Yeung; David Francis; Olivia Giouzeppos; David J. Amor

4304-A


American Journal of Medical Genetics Part A | 2015

SNP microarray abnormalities in a cohort of 28 infants with congenital diaphragmatic hernia

Zornitza Stark; Joanna Behrsin; Trent Burgess; Anna Ritchie; Alison Yeung; Tiong Yang Tan; Natasha J Brown; Ravi Savarirayan; Neil Patel

15 404 [US


Genetics in Medicine | 2018

Meeting the challenges of implementing rapid genomic testing in acute pediatric care

Zornitza Stark; Sebastian Lunke; Gemma R. Brett; Natalie B. Tan; Rachel Stapleton; Smitha Kumble; Alison Yeung; Dean Phelan; Belinda Chong; Miriam Fanjul‐Fernández; Justine Marum; Matthew Hunter; Anna Jarmolowicz; Yael Prawer; Jessica R. Riseley; Matthew Regan; Justine Elliott; Melissa Martyn; Stephanie Best; Tiong Yang Tan; Clara Gaff; Susan M. White

3263-US

Collaboration


Dive into the Alison Yeung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zornitza Stark

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Clara Gaff

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Belinda Chong

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Damien L. Bruno

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Gemma R. Brett

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge