Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiong Yang Tan is active.

Publication


Featured researches published by Tiong Yang Tan.


Nature Genetics | 2009

Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response

Gillian I. Rice; Jacquelyn Bond; Aruna Asipu; Rebecca L. Brunette; Iain W. Manfield; Ian M. Carr; Jonathan C. Fuller; Richard M. Jackson; Teresa Lamb; Tracy A. Briggs; Manir Ali; Hannah Gornall; Alec Aeby; Simon P Attard-Montalto; Enrico Bertini; C. Bodemer; Knut Brockmann; Louise Brueton; Peter Corry; Isabelle Desguerre; Elisa Fazzi; Angels Garcia Cazorla; Blanca Gener; B.C.J. Hamel; Arvid Heiberg; Matthew Hunter; Marjo S. van der Knaap; Ram Kumar; Lieven Lagae; Pierre Landrieu

Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.


Nature Genetics | 2012

Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature

Gillian I. Rice; Paul R. Kasher; Gabriella M.A. Forte; Niamh M. Mannion; Sam M. Greenwood; Marcin Szynkiewicz; Jonathan E. Dickerson; Sanjeev Bhaskar; Massimiliano Zampini; Tracy A. Briggs; Emma M. Jenkinson; Carlos A. Bacino; Roberta Battini; Enrico Bertini; Paul A. Brogan; Louise Brueton; Marialuisa Carpanelli; Corinne De Laet; Pascale de Lonlay; Mireia del Toro; Isabelle Desguerre; Elisa Fazzi; Angels García-Cazorla; Arvid Heiberg; Masakazu Kawaguchi; Ram Kumar; Jean-Pierre Lin; Charles Marques Lourenço; Alison Male; Wilson Marques

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutières syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.


Journal of Medical Genetics | 2009

Long-range regulation at the SOX9 locus in development and disease

Christopher T. Gordon; Tiong Yang Tan; Sabina Benko; David Fitzpatrick; Stanislas Lyonnet; Peter G. Farlie

The involvement of SOX9 in congenital skeletal malformation was demonstrated 15 years ago with the identification of mutations in and around the gene in patients with campomelic dysplasia (CD). Translocations upstream of the coding sequence suggested that altered expression of SOX9 was capable of severely impacting on skeletal development. Subsequent studies in humans and animal models pointed towards a complex regulatory region controlling SOX9 transcription, involving ∼1 Mb of upstream sequence. Recent data indicate that this regulatory domain may extend substantially further, with identification of several disruptions greater than 1 Mb upstream of SOX9 associated with isolated Pierre Robin sequence (PRS), a craniofacial disorder that is frequently a component of CD. The translocation breakpoints upstream of SOX9 can now be clustered into three groups, with a trend towards less severe skeletal phenotypes as the distance of each cluster from SOX9 increases. In this review we discuss how the identification of novel lesions surrounding SOX9 support the existence of tissue specific enhancers acting over a large distance to regulate expression of the gene during craniofacial development, and we highlight the potential for discovery of additional regulatory elements within the extended SOX9 control region.


Journal of Paediatrics and Child Health | 2006

Tumour surveillance in Beckwith–Wiedemann syndrome and hemihyperplasia: A critical review of the evidence and suggested guidelines for local practice

Tiong Yang Tan; David J. Amor

Abstract:  There is strong evidence for an association between overgrowth disorders such as Beckwith–Wiedemann syndrome and the development of neoplasia. An increased cancer risk has also been observed in individuals with isolated hemihyperplasia. We critically review the evidence for tumour surveillance in Beckwith–Wiedemann syndrome and isolated hemihyperplasia and suggest local practice guidelines.


The Journal of Pathology | 2013

Biallelic DICER1 mutations occur in Wilms tumours

Mona Wu; Nelly Sabbaghian; B. Xu; S. Addidou-Kalucki; C. Bernard; Donghui Zou; Anthony E. Reeve; M.R. Eccles; Caroline Cole; Catherine S. Choong; Adrian Charles; Tiong Yang Tan; D.M. Iglesias; P.R. Goodyer; William D. Foulkes

DICER1 is an endoribonuclease central to the generation of microRNAs (miRNAs) and short interfering RNAs (siRNAs). Germline mutations in DICER1 have been associated with a pleiotropic tumour predisposition syndrome and Wilms tumour (WT) is a rare manifestation of this syndrome. Three WTs, each in a child with a deleterious germline DICER1 mutation, were screened for somatic DICER1 mutations and were found to bear specific mutations in either the RNase IIIa (n = 1) or the RNase IIIb domain (n = 2). In the two latter cases, we demonstrate that the germline and somatic DICER1 mutations were in trans, suggesting that the two‐hit hypothesis of tumour formation applies for these examples of WT. Among 191 apparently sporadic WTs, we identified five different missense or deletion somatic DICER1 mutations (2.6%) in four individual WTs; one tumour had two very likely deleterious somatic mutations in trans in the RNase IIIb domain (c.5438A>G and c.5452G>A). In vitro studies of two somatic single‐base substitutions (c.5429A>G and c.5438A>G) demonstrated exon 25 skipping from the transcript, a phenomenon not previously reported in DICER1. Further we show that DICER1 transcripts lacking exon 25 can be translated in vitro. This study has demonstrated that a subset of WTs exhibits two ‘hits’ in DICER1, suggesting that these mutations could be key events in the pathogenesis of these tumours. Copyright


Genetics in Medicine | 2016

A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders.

Zornitza Stark; Tiong Yang Tan; Belinda Chong; Gemma R. Brett; Patrick Yap; Maie Walsh; Alison Yeung; Heidi Peters; Dylan Mordaunt; Shannon Cowie; David J. Amor; Ravi Savarirayan; George McGillivray; Lilian Downie; Paul G. Ekert; Christiane Theda; Paul A. James; Joy Yaplito-Lee; Monique M. Ryan; Richard J. Leventer; Emma Creed; Ivan Macciocca; Katrina M. Bell; Alicia Oshlack; Simon Sadedin; Peter Georgeson; Charlotte Anderson; Natalie P. Thorne; Clara Gaff; Susan M. White

Purpose:To prospectively evaluate the diagnostic and clinical utility of singleton whole-exome sequencing (WES) as a first-tier test in infants with suspected monogenic disease.Methods:Singleton WES was performed as a first-tier sequencing test in infants recruited from a single pediatric tertiary center. This occurred in parallel with standard investigations, including single- or multigene panel sequencing when clinically indicated. The diagnosis rate, clinical utility, and impact on management of singleton WES were evaluated.Results:Of 80 enrolled infants, 46 received a molecular genetic diagnosis through singleton WES (57.5%) compared with 11 (13.75%) who underwent standard investigations in the same patient group. Clinical management changed following exome diagnosis in 15 of 46 diagnosed participants (32.6%). Twelve relatives received a genetic diagnosis following cascade testing, and 28 couples were identified as being at high risk of recurrence in future pregnancies.Conclusions:This prospective study provides strong evidence for increased diagnostic and clinical utility of singleton WES as a first-tier sequencing test for infants with a suspected monogenic disorder. Singleton WES outperformed standard care in terms of diagnosis rate and the benefits of a diagnosis, namely, impact on management of the child and clarification of reproductive risks for the extended family in a timely manner.Genet Med 18 11, 1090–1096.


American Journal of Human Genetics | 2009

Mutations in the Heparan-Sulfate Proteoglycan Glypican 6 (GPC6) Impair Endochondral Ossification and Cause Recessive Omodysplasia

Ana Belinda Campos-Xavier; Danielle Martinet; John F. Bateman; Dan Belluoccio; Lynn Rowley; Tiong Yang Tan; Alica Baxová; Karl-Henrik Gustavson; Zvi U. Borochowitz; A. Micheil Innes; Sheila Unger; Jacques S. Beckmann; Laureane Mittaz; Diana Ballhausen; Andrea Superti-Furga; Ravi Savarirayan; Luisa Bonafé

Glypicans are a family of glycosylphosphatidylinositol (GPI)-anchored, membrane-bound heparan sulfate (HS) proteoglycans. Their biological roles are only partly understood, although it is assumed that they modulate the activity of HS-binding growth factors. The involvement of glypicans in developmental morphogenesis and growth regulation has been highlighted by Drosophila mutants and by a human overgrowth syndrome with multiple malformations caused by glypican 3 mutations (Simpson-Golabi-Behmel syndrome). We now report that autosomal-recessive omodysplasia, a genetic condition characterized by short-limbed short stature, craniofacial dysmorphism, and variable developmental delay, maps to chromosome 13 (13q31.1-q32.2) and is caused by point mutations or by larger genomic rearrangements in glypican 6 (GPC6). All mutations cause truncation of the GPC6 protein and abolish both the HS-binding site and the GPI-bearing membrane-associated domain, and thus loss of function is predicted. Expression studies in microdissected mouse growth plate revealed expression of Gpc6 in proliferative chondrocytes. Thus, GPC6 seems to have a previously unsuspected role in endochondral ossification and skeletal growth, and its functional abrogation results in a short-limb phenotype.


Journal of Medical Genetics | 2008

Detection of cryptic pathogenic copy number variations and constitutional loss of heterozygosity using high resolution SNP microarray analysis in 117 patients referred for cytogenetic analysis and impact on clinical practice

Damien L. Bruno; Devika Ganesamoorthy; Jacqueline Schoumans; Agnes Bankier; David Coman; Martin B. Delatycki; R. J. M. Gardner; Matthew Hunter; Paul A. James; Peter Kannu; George McGillivray; Nicholas Pachter; Heidi Peters; Claudine Rieubland; Ravi Savarirayan; Ingrid E. Scheffer; Leslie J. Sheffield; Tiong Yang Tan; Susan M. White; Alison Yeung; Z Bowman; C Ngo; Kwong Wai Choy; V Cacheux; Lee H. Wong; David J. Amor; Howard R. Slater

Background: Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. Methods: Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. Results: 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as “potentially pathogenic”. Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. Conclusions: Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered “new syndromes” were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype–phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2013

Developmental and genetic perspectives on Pierre Robin sequence

Tiong Yang Tan; Nicky Kilpatrick; Peter G. Farlie

Pierre Robin sequence (PRS) is a craniofacial anomaly comprising mandibular hypoplasia, cleft secondary palate and glossoptosis leading to life‐threatening obstructive apnea and feeding difficulties during the neonatal period. The respiratory issues require careful management and in severe cases may require extended stays in neonatal intensive care units and surgical intervention such as lengthening the lower jaw or tracheotomy to relieve airway obstruction. These feeding and respiratory complications frequently continue well into childhood, affecting not only growth and development but also impacting on long term educational attainment. The diagnosis of PRS depends on readily recognizable clinical features but the phenotypic similarity of many PRS individuals conceals considerable etiological heterogeneity. Defects in the growth of the mandible sit at the core of PRS and the natural history of PRS can be classified into two major streams: primary defects of mandibular outgrowth and elongation and issues that are external to the mandibular skeleton but that secondarily impact on its growth. These altered developmental trajectories appear to be driven by a range of influences including defects in cartilage growth, neuromuscular function and fetal constraint. Various genetic and cytogenetic associations have been made with PRS and the diversity of these associations highlights the fact that there are numerous ways to arrive at this common phenotypic endpoint.


Journal of Medical Genetics | 2009

Phenotypic expansion and further characterisation of the 17q21.31 microdeletion syndrome

Tiong Yang Tan; Salim Aftimos; Lisa Worgan; Rachel Susman; Meredith Wilson; Sondhya Ghedia; Edwin P. Kirk; Donald R. Love; Anne Ronan; Artur Darmanian; Anne Slavotinek; Jacob Hogue; John B. Moeschler; Jillian R. Ozmore; Richard Widmer; Ravi Savarirayan; Gregory Peters

Background: The recognition of the 17q21.31 microdeletion syndrome has been facilitated by high resolution microarray technology. Recent clinical delineation of this condition emphasises a typical facial appearance, cardiac and renal defects, and speech delay in addition to intellectual disability, hypotonia and seizures. Methods and results: We describe 11 previously unreported patients expanding the phenotypic spectrum to include aortic root dilatation, recurrent joint subluxation, conductive hearing loss due to chronic otitis media, dental anomalies, and persistence of fetal fingertip pads. Molecular analysis of the deletions demonstrates a critical region spanning 440 kb involving either partially or wholly five genes, CRHR1, IMP5, MAPT, STH, and KIAA1267. Conclusion: These data have significant implications for the clinical diagnosis and management of other individuals with 17q21.31 deletions.

Collaboration


Dive into the Tiong Yang Tan's collaboration.

Top Co-Authors

Avatar

Zornitza Stark

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Yeung

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Patrick Yap

Auckland City Hospital

View shared research outputs
Top Co-Authors

Avatar

Clara Gaff

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Trent Burgess

Royal Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge