Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alistair J. Standish is active.

Publication


Featured researches published by Alistair J. Standish.


PLOS ONE | 2012

Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production

Alistair J. Standish; Angela A. Salim; Hua Zhang; Robert J. Capon; Renato Morona

Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both Gram-negative and –positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated Gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.


Antioxidants & Redox Signaling | 2014

The Role of Bacterial Protein Tyrosine Phosphatases in the Regulation of the Biosynthesis of Secreted Polysaccharides

Alistair J. Standish; Renato Morona

SIGNIFICANCE Tyrosine phosphorylation and associated protein tyrosine phosphatases are gaining prominence as critical mechanisms in the regulation of fundamental processes in a wide variety of bacteria. In particular, these phosphatases have been associated with the control of the biosynthesis of capsular polysaccharides and extracellular polysaccharides, critically important virulence factors for bacteria. RECENT ADVANCES Deletion and overexpression of the phosphatases result in altered polysaccharide biosynthesis in a range of bacteria. The recent structures of associated auto-phosphorylating tyrosine kinases have suggested that the phosphatases may be critical for the cycling of the kinases between monomers and higher order oligomers. CRITICAL ISSUES Additional substrates of the phosphatases apart from cognate kinases are currently being identified. These are likely to be critical to our understanding of the mechanism by which polysaccharide biosynthesis is regulated. FUTURE DIRECTIONS Ultimately, these protein tyrosine phosphatases are an attractive target for the development of novel antimicrobials. This is particularly the case for the polymerase and histidinol phosphatase family, which is predominantly found in bacteria. Furthermore, the determination of bacterial tyrosine phosphoproteomes will likely help to uncover the fundamental roles, mechanism, and critical importance of these phosphatases in a wide range of bacteria.


Current Drug Targets | 2012

Wzy-Dependent Bacterial Capsules as Potential Drug Targets

Daniel J. Ericsson; Alistair J. Standish; Bostjan Kobe; Renato Morona

The bacterial capsule is a recognized virulence factor in pathogenic bacteria. It likely works as an antiphagocytic barrier by minimizing complement deposition on the bacterial surface. With the continual rise of bacterial pathogens resistant to multiple antibiotics, there is an increasing need for novel drugs. In the Wzy-dependent pathway, the biosynthesis of capsular polysaccharide (CPS) is regulated by a phosphoregulatory system, whose main components consist of bacterial-tyrosine kinases (BY-kinases) and their cognate phosphatases. The ability to regulate capsule biosynthesis has been shown to be vital for pathogenicity, because different stages of infection require a shift in capsule thickness, making the phosphoregulatory proteins suitable as drug targets. Here, we review the role of regulatory proteins focusing on Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli and discuss their suitability as targets in structure-based drug design.


Microbiology | 2014

Tyrosine phosphorylation enhances activity of pneumococcal autolysin LytA.

Alistair J. Standish; Jonathan J. Whittall; Renato Morona

Tyrosine phosphorylation has long been recognized as a crucial post-translational regulatory mechanism in eukaryotes. However, only in the past decade has recognition been given to the crucial importance of bacterial tyrosine phosphorylation as an important regulatory feature of pathogenesis. This study describes the effect of tyrosine phosphorylation on the activity of a major virulence factor of the pneumococcus, the autolysin LytA, and a possible connection to the Streptococcus pneumoniae capsule synthesis regulatory proteins (CpsB, CpsC and CpsD). We show that in vitro pneumococcal tyrosine kinase, CpsD, and the protein tyrosine phosphatase, CpsB, act to phosphorylate and dephosphorylate LytA. Furthermore, this modulates LytA function in vitro with phosphorylated LytA binding more strongly to the choline analogue DEAE. A phospho-mimetic (Y264E) mutation of the LytA phosphorylation site displayed similar phenotypes as well as an enhanced dimerization capacity. Similarly, tyrosine phosphorylation increased LytA amidase activity, as evidenced by a turbidometric amidase activity assay. Similarly, when the phospho-mimetic mutation was introduced in the chromosomal lytA of S. pneumoniae, autolysis occurred earlier and at an enhanced rate. This study thus describes, to our knowledge, the first functional regulatory effect of tyrosine phosphorylation on a non-capsule-related protein in the pneumococcus, and suggests a link between the regulation of LytA-dependent autolysis of the cell and the biosynthesis of capsular polysaccharide.


Journal of Molecular Biology | 2016

Unprecedented abundance of protein tyrosine phosphorylation modulates Shigella flexneri virulence

Alistair J. Standish; Min Yan Teh; Elizabeth Ngoc Hoa Tran; Matthew Thomas Doyle; Paul J. Baker; Renato Morona

Evidence is accumulating that protein tyrosine phosphorylation plays a crucial role in the ability of important human bacterial pathogens to cause disease. While most works have concentrated on its role in the regulation of a major bacterial virulence factor, the polysaccharide capsule, recent studies have suggested a much broader role for this post-translational modification. This prompted us to investigate protein tyrosine phosphorylation in the human pathogen Shigella flexneri. We first completed a tyrosine phosphoproteome, identifying 905 unique tyrosine phosphorylation sites on at least 573 proteins (approximately 15% of all proteins). This is the most tyrosine-phosphorylated sites and proteins in a single bacterium identified to date, substantially more than the level seen in eukaryotic cells. Most had not previously been identified and included proteins encoded by the virulence plasmid, which is essential for S. flexneri to invade cells and cause disease. In order to investigate the function of these phosphorylation sites in important virulence factors, phosphomimetic and ablative mutations were constructed in the type 3 secretion system ATPase Spa47 and the master virulence regulator VirB. This revealed that tyrosine residues phosphorylated in our study are critical for Spa47 and VirB activity, and tyrosine phosphorylation likely regulates their functional activity and subsequently the virulence of this major human pathogen. This study suggests that tyrosine phosphorylation plays a critical role in regulating a wide variety of virulence factors in the human pathogen S. flexneri and serves as a base for future studies defining its complete role.


Journal of Bacteriology | 2015

Topology of Streptococcus pneumoniae CpsC, a Polysaccharide Copolymerase and Bacterial Protein Tyrosine Kinase Adaptor Protein

Jonathan J. Whittall; Renato Morona; Alistair J. Standish

In Gram-positive bacteria, tyrosine kinases are split into two proteins, the cytoplasmic tyrosine kinase and a transmembrane adaptor protein. In Streptococcus pneumoniae, this transmembrane adaptor is CpsC, with the C terminus of CpsC critical for interaction and subsequent tyrosine kinase activity of CpsD. Topology predictions suggest that CpsC has two transmembrane domains, with the N and C termini present in the cytoplasm. In order to investigate CpsC topology, we used a chromosomal hemagglutinin (HA)-tagged Cps2C protein in S. pneumoniae strain D39. Incubation of both protoplasts and membranes with carboxypeptidase B (CP-B) resulted in complete degradation of HA-Cps2C in all cases, indicating that the C terminus of Cps2C was likely extracytoplasmic and hence that the proteins topology was not as predicted. Similar results were seen with membranes from S. pneumoniae strain TIGR4, indicating that Cps4C also showed similar topology. A chromosomally encoded fusion of HA-Cps2C and Cps2D was not degraded by CP-B, suggesting that the fusion fixed the C terminus within the cytoplasm. However, capsule synthesis was unaltered by this fusion. Detection of the CpsC C terminus by flow cytometry indicated that it was extracytoplasmic in approximately 30% of cells. Interestingly, a mutant in the protein tyrosine phosphatase CpsB had a significantly greater proportion of positive cells, although this effect was independent of its phosphatase activity. Our data indicate that CpsC possesses a varied topology, with the C terminus flipping across the cytoplasmic membrane, where it interacts with CpsD in order to regulate tyrosine kinase activity.


PLOS ONE | 2018

Role of Streptococcus pneumoniae OM001 operon in capsular polysaccharide production, virulence and survival in human saliva

Zuleeza Ahmad; Richard M. Harvey; James C. Paton; Alistair J. Standish; Renato Morona

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia in all ages worldwide, and with ever-increasing antibiotic resistance, the understanding of its pathogenesis and spread is as important as ever. Recently, we reported the presence of a Low Molecular Weight Tyrosine Phosphatase (LMWPTP) Spd1837 in the pneumococcus. This protein is encoded in an operon, OM001 with two other genes, with previous work implicating this operon as important for pneumococcal virulence. Thus, we set out to investigate the role of the individual genes in the operon during pneumococcal pathogenesis. As LMWPTPs play a major role in capsular polysaccharide (CPS) biosynthesis in many bacteria, we tested the effect of mutating spd1837 and its adjacent genes, spd1836 and spd1838 on CPS levels. Our results suggest that individual deletion of the genes, including the LMWPTP, did not modulate CPS levels, in multiple conditions, and in different strain backgrounds. Following in vivo studies, Spd1836 was identified as a novel virulence factor during pneumococcal invasive disease, in both the lungs and blood, with this protein alone responsible for the effects of operon’s role in virulence. We also showed that a deletion in spd1836, spd1838 or the overall OM001 operon reduced survival in human saliva during the conditions that mimic transmission compared to the wildtype strain. With studies suggesting that survival in human saliva may be important for transmission, this study identifies Spd1836 and Spd1838 as transmission factors, potentially facilitating the spread of the pneumococcus from person to person. Overall, this study hopes to further our understanding of the bacterial transmission that precedes disease and outbreaks.


Microbiology | 2018

In vitro characterization and identification of potential substrates of a low molecular weight protein tyrosine phosphatase in Streptococcus pneumoniae

Zuleeza Ahmad; Renato Morona; Alistair J. Standish

Streptococcus pneumoniae is a major human pathogen responsible for significant mortality and morbidity worldwide. Within the annotated genome of the pneumococcus lies a previously uncharacterized protein tyrosine phosphatase which shows homology to low molecular weight protein tyrosine phosphatases (LMWPTPs). LMWPTPs modulate many processes critical for the pathogenicity of a number of bacteria including capsular polysaccharide biosynthesis, stress response and persistence in host macrophages. Here, we demonstrate that Spd1837 is indeed a LMWPTP, by purifying the protein, and characterizing its phosphatase activity. Spd1837 showed specific tyrosine phosphatase activity, and it did not form higher order oligomers in contrast to many other LMWPTPs. Substrate-trapping assays using the wild-type and the phosphatase-deficient Spd1837 identified potential substrates/interacting proteins including major metabolic enzymes such as ATP-dependent-6-phosphofructokinase and Hpr kinase/phosphorylase. Given the tight association between the bacterial basic physiology and virulence, this study hopes to prompt further investigation of how the pneumococcus controls its metabolic flux via the LMWPTP Spd1837.


Fems Immunology and Medical Microbiology | 2018

Specific growth conditions induce a Streptococcus pneumoniae non-mucoidal, small colony variant and determine the outcome of its co-culture with Haemophilus influenzae

Alexandra Tikhomirova; Claudia Trappetti; Alistair J. Standish; Yiwen Zhou; James Breen; Stephen Pederson; P. S. Zilm; James C. Paton; Stephen P. Kidd

Haemophilus influenzae and Streptococcus pneumoniae are known aetiologic agents of chronic otitis media, frequently as a multispecies infection. In this study, we show that the outcome of H. influenzae/S. pneumoniae interactions is dependent on the nutrient source. In continuous culture containing chemically defined media with lactose, S. pneumoniae was non-viable in mono-culture, and in co-culture remained non-viable until 288 h. With glucose, S. pneumoniae became non-viable in mono-culture, but uniquely existed in 3 distinct states in co-culture: parental cells (until 24 h), a dormant state until 336 h and its re-emergence as a non-mucoidal, small colony variant (SCV). The S. pneumoniae SCV was stable and whole genome sequencing showed three major single nucleotide polymorphisms in the SCV cells-cap3A (capsule biosynthesis pathway), fpg (DNA glycosylase of the DNA repair mechanism) and glutamate-5-kinase. Previously, fpg mutants have shown increased mutator rates, permitting bacterial survival against host-generated stresses. Transcriptomics showed these SCV cells up-regulated sugar transporters and toxin/antitoxin systems. An animal model revealed a reduced survival in the lungs and ear by SCV cells. This is the first study documenting the effect of carbon source and the development of a distinct S. pneumoniae cell type during H. influenzae/S. pneumoniae interactions.


Streptococcus Pneumoniae#R##N#Molecular Mechanisms of Host-Pathogen Interactions | 2015

Capsule Structure, Synthesis, and Regulation

Alistair J. Standish; Renato Morona

The polysaccharide capsule (CPS) of Streptococcus pneumoniae is the single most critical factor underpinning the virulence of this major human pathogen. Indeed, CPS has been the focus of a plethora of research, and has played a fundamental role in a number of seminal findings, including that DNA is the carrier of genetic material. The importance of CPS to virulence is predominantly through its ability to enable bacteria to evade opsonophagocytic killing, as is discussed elsewhere in this book. Furthermore, CPS is the target for the current breed of vaccines, which have proved successful in significantly decreasing the level of invasive pneumococcal disease. This chapter focuses on this major virulence factor, describing its general structure, methods for biosynthesis, and the various modes of regulation which influence CPS levels. A greater understanding of such features is critical in order to uncover novel ways to continue the fight against this major human killer.

Collaboration


Dive into the Alistair J. Standish's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bostjan Kobe

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge