Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allan J. Guimarães is active.

Publication


Featured researches published by Allan J. Guimarães.


Brazilian Journal of Microbiology | 2006

Diagnosis of histoplasmosis

Allan J. Guimarães; Joshua D. Nosanchuk; Rosely Maria Zancopé-Oliveira

Endemic mycoses can be challenging to diagnose and accurate interpretation of laboratory data is important to ensure the most appropriate treatment for the patients. Although the definitive diagnosis of histoplasmosis (HP), one of the most frequent endemic mycoses in the world, is achieved by direct diagnosis performed by micro and/or macroscopic observation of Histoplasma capsulatum (H. capsulatum), serologic evidence of this fungal infection is important since the isolation of the etiologic agents is time-consuming and insensitive. A variety of immunoassays have been used to detect specific antibodies to H. capsulatum. The most applied technique for antibody detection is immunodiffusion with sensitivity between 70 to 100 % and specificity of 100%, depending on the clinical form. The complement fixation (CF) test, a methodology extensively used on the past, is less specific (60 to 90%). Detecting fungal antigens by immunoassays is valuable in immunocompromised individuals where such assays achieve positive predictive values of 96-98%. Most current tests in diagnostic laboratories still utilize unpurified antigenic complexes from either whole fungal cells or their culture filtrates. Emphasis has shifted, however, to clinical immunoassays using highly purified and well-characterized antigens including recombinant antigens. In this paper, we review the current conventional diagnostic tools, such as complement fixation and immunodiffusion, outline the development of novel diagnostic reagents and methods, and discuss their relative merits and disadvantages to the immunodiagnostic of this mycosis.


PLOS ONE | 2010

Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

Débora L. Oliveira; Ernesto S. Nakayasu; Luna S. Joffe; Allan J. Guimarães; Tiago J. P. Sobreira; Joshua D. Nosanchuk; Radames J. B. Cordero; Susana Frases; Arturo Casadevall; Igor C. Almeida; Leonardo Nimrichter; Marcio L. Rodrigues

Background Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100–300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.


PLOS Pathogens | 2011

Phospholipids Trigger Cryptococcus neoformans Capsular Enlargement during Interactions with Amoebae and Macrophages

Cara J. Chrisman; Patrícia Albuquerque; Allan J. Guimarães; Edward Nieves; Arturo Casadevall

A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists.


Journal of Clinical Microbiology | 2003

PCR Assay for Identification of Histoplasma capsulatum Based on the Nucleotide Sequence of the M Antigen

Herbert Leonel de Matos Guedes; Allan J. Guimarães; Mauro de Medeiros Muniz; Claudia Vera Pizzini; Andrew J. Hamilton; José Mauro Peralta; George S. Deepe; Rosely Maria Zancopé-Oliveira

ABSTRACT The major diagnostic antigens of Histoplasma capsulatum var. capsulatum are the H and M antigens, pluripotent glycoproteins that elicit both humoral and T-cell-mediated immune responses. The gene encoding the M antigen has previously been sequenced, and its sequence has significant overall homology to those of the genes for fungal catalases. Regions of the M-antigen gene with little or no homology were used to design four oligonucleotide sequences for application in the PCR detection and identification of H. capsulatum var. capsulatum. The PCR correctly identified the 31 H. capsulatum var. capsulatum strains isolated from human, animal, and soil specimens and 1 H. capsulatum var. duboisii isolate. PCR products of 111 and 279 bp were amplified with primers Msp1F-Msp1R and Msp2F-Msp2R, respectively. No amplification product was obtained from DNA extracted from an H. capsulatum var. farciminosum isolate. The specificity of the PCR with the M-antigen-derived primers was confirmed by the total absence of amplification products when genomic DNA from Paracoccidioides brasiliensis, Candida spp., Sporothrix schenckii, Cryptococcus neoformans, Blastomyces dermatitidis, Coccidioides immitis, Aspergillus niger, and Aspergillus fumigatus were applied in the reaction. This rapid, sensitive, and specific assay provides a way to identify typical and atypical isolates of H. capsulatum var. capsulatum.


Cellular Microbiology | 2015

Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans.

Gabriele Vargas; Juliana Dutra B. Rocha; Débora L. Oliveira; Priscila C. Albuquerque; Susana Frases; Suelen Silvana dos Santos; Joshua D. Nosanchuk; Andre M. O. Gomes; Lia Carolina Soares Medeiros; Kildare Miranda; Tiago J. P. Sobreira; Ernesto S. Nakayasu; Emma Arigi; Arturo Casadevall; Allan J. Guimarães; Marcio L. Rodrigues; Célio G. Freire-de-Lima; Igor C. Almeida; Leonardo Nimrichter

The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans‐cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow‐derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin‐layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)‐12, transforming growth factor‐beta (TGF‐β) and IL‐10. Similarly, EV‐treated DC produced IL‐12p40, IL‐10 and tumour necrosis factor‐alpha. In addition, EV treatment induced the up‐regulation of CD86 and major histocompatibility complex class‐II (MHC‐II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.


Virulence | 2013

Galleria mellonella as a model host to study Paracoccidioides lutzii and Histoplasma capsulatum.

Luciana Thomaz; Rocío García-Rodas; Allan J. Guimarães; Carlos P. Taborda; Oscar Zaragoza; Joshua D. Nosanchuk

Non-mammalian models have been used to investigate fungal virulence. In this work we have explored the use of Galleria mellonella as an infection model for the pathogenic dimorphic fungi Histoplasma capsulatum and Paracoccidioides lutzii. In mammalian models these fungi cause similar infections, and disease outcomes are influenced by the quantity of the infective inocula. We describe a similar aspect in a G. mellonella model and characterize the pathogenesis features in this system. Infection with P. lutzii or H. capsulatum, in all inoculum used, killed larvae at 25 and 37°C. However, there was a lack of correlation between the number of yeast cells used for infection and the time to larvae death, which may indicate that the fungi induce protective responses in a dynamic manner as the lowest concentrations of fungi induced the most rapid death. For both fungi, the degree of larvae melanization was directly proportional to the inocula size, and this effect was visibly more apparent at 37°C. Histological evaluation of the larvae showed a correlation between the inoculum and granuloma-like formation. Our results suggest that G. mellonella is a potentially useful model to study virulence of dimorphic fungi.


Molecular Microbiology | 2011

Evidence for branching in cryptococcal capsular polysaccharides and consequences on its biological activity

Radames J. B. Cordero; Susana Frases; Allan J. Guimarães; Johanna Rivera; Arturo Casadevall

The encapsulated fungus Cryptococcus neoformans is a common cause of life‐threatening disease in immunocompromised individuals. Its major virulence determinant is the polysaccharide (PS) capsule. An unsolved problem in cryptococcal biology is whether the PSs composing the capsule are linear or complex branched polymers, as well as the implications of this structural composition in pathogenesis. In this study we approached the problem by combining static and dynamic light scattering, viscosity analysis, and high‐resolution microscopy and correlated the findings with biological properties. Analysis of the dependence of capsular PS molecular mass and the radius of gyration provided strong evidence against a simple linear PS configuration. Shape factors calculated from light scattering measurements in solution revealed values consistent with polymer branching. Furthermore, viscosity measurements provided complementary evidence for structural branching. Electron microscopy showed PS spherical‐like structures similar to other branched PS. Finally, we show that the capacity of capsular PS to interfere in complement‐mediated phagocytosis, inhibit nitric oxide production by macrophage‐like cells, protect against reactive oxygen species, antibody reactivity and half‐life in serum were influenced by the degree of branching, providing evidence for the notion that PS branching is an important parameter in determining the biological activity of C. neoformans PS.


Cellular Microbiology | 2010

Cryptococcus neoformans responds to mannitol by increasing capsule size in vitro and in vivo

Allan J. Guimarães; Susana Frases; Radames J. B. Cordero; Leonardo Nimrichter; Arturo Casadevall; Joshua D. Nosanchuk

The polysaccharide capsule of the fungus Cryptococcus neoformans is its main virulence factor. In this study, we determined the effects of mannitol and glucose on the capsule and exopolysaccharide production. Growth in mannitol significantly increased capsular volume compared with cultivation in glucose. However, cells grown in glucose concentrations higher than 62.5 mM produced more exopolysaccharide than cells grown in mannitol. The fibre lengths and glycosyl composition of capsular polysaccharide from yeast grown in mannitol was structurally different from that of yeast grown in glucose. Furthermore, mannitol treatment of mice infected intratracheally with C. neoformans resulted in fungal cells with significantly larger capsules and the mice had reduced fungal dissemination to the brain. Our results demonstrate the capacity of carbohydrate source and concentration to modify the expression of a major virulence factor of C. neoformans. These findings may impact the clinical management of cryptococcosis.


Communicative & Integrative Biology | 2010

Biogenesis of extracellular vesicles in yeast: Many questions with few answers

Débora L. Oliveira; Ernesto S. Nakayasu; Luna S. Joffe; Allan J. Guimarães; Tiago J. P. Sobreira; Joshua D. Nosanchuk; Radames J. B. Cordero; Susana Frases; Arturo Casadevall; Igor C. Almeida; Leonardo Nimrichter; Márcio Rodrigues

The cellular events required for unconventional protein secretion in eukaryotic pathogens are beginning to be revealed. In fungi, extracellular release of proteins involves passage through the cell wall by mechanisms that are poorly understood. In recent years, several studies demonstrated that yeast cells produce vesicles that traverse the cell wall to release a wide range of cellular components into the extracellular space. These studies suggested that extracellular vesicle release involves components of both conventional and unconventional secretory pathways, although the precise mechanisms required for this process are still unknown. We discuss here cellular events that are candidates for regulating this interesting but elusive event in the biology of yeast cells.


Clinical Cancer Research | 2009

Radioimmunotherapy of Experimental Human Metastatic Melanoma with Melanin-Binding Antibodies and in Combination with Dacarbazine

Ekaterina Revskaya; Artemio M. Jongco; Rani S. Sellers; Robertha C. Howell; Wade Koba; Allan J. Guimarães; Joshua D. Nosanchuk; Arturo Casadevall; Ekaterina Dadachova

Purpose: Melanin has emerged as an attractive target for radioimmunotherapy (RIT) of melanoma, and a radiolabeled monoclonal antibody (mAb) 6D2 to melanin is currently in clinical evaluation. We investigated two approaches to improve the targeting of radiation to tumors using melanin-binding mAbs: (a) the use of an additional mAb to melanin could provide information on whether using antibodies to melanin can serve as a general approach to development of therapeutics for melanoma, and (b) as melanin targeting involves the antibody binding to extracellular melanin released from necrotic melanoma cells, we hypothesized that the administration of a chemotherapeutic agent followed by RIT would facilitate the delivery of radiation to the tumors due to the increased presence of free melanin. Experimental Design: We evaluated the therapeutic efficacy of two melanin-binding IgM mAbs labeled with 188Re (6D2 and 11B11). We compared the efficacy of RIT with 188Re-6D2 to chemotherapy with dacarbazine (DTIC) and to combined chemotherapy and RIT in human metastatic melanoma-bearing nude mice. Results: Therapeutic efficacy of 188Re-labeled 6D2 and 11B11 was comparable despite differences in their affinity and binding site numbers. Comparison of chemotherapy with DTIC and RIT revealed that RIT was more effective in slowing tumor growth in mice. Administration of DTIC followed by RIT was more effective than either modality alone. Conclusions: These results provide encouragement for the development of RIT for melanoma with melanin-binding mAbs and suggest that combining chemotherapy and RIT may be a promising approach for the treatment of metastatic melanoma.

Collaboration


Dive into the Allan J. Guimarães's collaboration.

Top Co-Authors

Avatar

Joshua D. Nosanchuk

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Leonardo Nimrichter

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcio L. Rodrigues

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Susana Frases

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

José Mauro Peralta

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernesto S. Nakayasu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Igor C. Almeida

University of Texas at El Paso

View shared research outputs
Researchain Logo
Decentralizing Knowledge