Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardo Nimrichter is active.

Publication


Featured researches published by Leonardo Nimrichter.


Eukaryotic Cell | 2008

Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence.

Marcio L. Rodrigues; Ernesto S. Nakayasu; Débora L. Oliveira; Leonardo Nimrichter; Joshua D. Nosanchuk; Igor C. Almeida; Arturo Casadevall

ABSTRACT Cryptococcus neoformans produces vesicles containing its major virulence factor, the capsular polysaccharide glucuronoxylomannan (GXM). These vesicles cross the cell wall to reach the extracellular space, where the polysaccharide is supposedly used for capsule growth or delivered into host tissues. In the present study, we characterized vesicle morphology and protein composition by a combination of techniques including electron microscopy, proteomics, enzymatic activity, and serological reactivity. Secretory vesicles in C. neoformans appear to be correlated with exosome-like compartments derived from multivesicular bodies. Extracellular vesicles manifested various sizes and morphologies, including electron-lucid membrane bodies and electron-dense vesicles. Seventy-six proteins were identified by proteomic analysis, including several related to virulence and protection against oxidative stress. Biochemical tests indicated laccase and urease activities in vesicles. In addition, different vesicle proteins were recognized by sera from patients with cryptococcosis. These results reveal an efficient and general mechanism of secretion of pathogenesis-related molecules in C. neoformans, suggesting that extracellular vesicles function as “virulence bags” that deliver a concentrated payload of fungal products to host effector cells and tissues.


Eukaryotic Cell | 2007

Vesicular Polysaccharide Export in Cryptococcus neoformans Is a Eukaryotic Solution to the Problem of Fungal Trans-Cell Wall Transport

Marcio L. Rodrigues; Leonardo Nimrichter; Débora L. Oliveira; Susana Frases; Kildare Miranda; Oscar Zaragoza; Mauricio Alvarez; Antonio Nakouzi; Marta Feldmesser; Arturo Casadevall

ABSTRACT The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment.


Infection and Immunity | 2010

Extracellular Vesicles from Cryptococcus neoformans Modulate Macrophage Functions

Débora L. Oliveira; Célio G. Freire-de-Lima; Joshua D. Nosanchuk; Arturo Casadevall; Marcio L. Rodrigues; Leonardo Nimrichter

ABSTRACT Cryptococcus neoformans and distantly related fungal species release extracellular vesicles that traverse the cell wall and contain a varied assortment of components, some of which have been associated with virulence. Previous studies have suggested that these extracellular vesicles are produced in vitro and during animal infection, but the role of vesicular secretion during the interaction of fungi with host cells remains unknown. In this report, we demonstrate by fluorescence microscopy that mammalian macrophages can incorporate extracellular vesicles produced by C. neoformans. Incubation of cryptococcal vesicles with murine macrophages resulted in increased levels of extracellular tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), and transforming growth factor β (TGF-β). Vesicle preparations also resulted in a dose-dependent stimulation of nitric oxide production by phagocytes, suggesting that vesicle components stimulate macrophages to produce antimicrobial compounds. Treated macrophages were more effective at killing C. neoformans yeast. Our results indicate that the extracellular vesicles of C. neoformans can stimulate macrophage function, apparently activating these phagocytic cells to enhance their antimicrobial activity. These results establish that cryptococcal vesicles are biologically active.


PLOS ONE | 2010

Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

Débora L. Oliveira; Ernesto S. Nakayasu; Luna S. Joffe; Allan J. Guimarães; Tiago J. P. Sobreira; Joshua D. Nosanchuk; Radames J. B. Cordero; Susana Frases; Arturo Casadevall; Igor C. Almeida; Leonardo Nimrichter; Marcio L. Rodrigues

Background Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100–300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.


Blood | 2008

E-selectin receptors on human leukocytes

Leonardo Nimrichter; Monica M. Burdick; Kazuhiro Aoki; Wouter Laroy; Mark A. Fierro; Sherry A. Hudson; Christopher E. Von Seggern; Robert J. Cotter; Bruce S. Bochner; Michael Tiemeyer; Konstantinos Konstantopoulos; Ronald L. Schnaar

Selectins on activated vascular endothelium mediate inflammation by binding to complementary carbohydrates on circulating neutrophils. The human neutrophil receptor for E-selectin has not been established. We report here that sialylated glycosphingolipids with 5 N-acetyllactosamine (LacNAc, Galbeta1-4GlcNAcbeta1-3) repeats and 2 to 3 fucose residues are major functional E-selectin receptors on human neutrophils. Glycolipids were extracted from 10(10) normal peripheral blood human neutrophils. Individual glycolipid species were resolved by chromatography, adsorbed as model membrane monolayers and selectin-mediated cell tethering and rolling under fluid shear was quantified as a function of glycolipid density. E-selectin-expressing cells tethered and rolled on selected glycolipids, whereas P-selectin-expressing cells failed to interact. Quantitatively minor terminally sialylated glycosphingolipids with 5 to 6 LacNAc repeats and 2 to 3 fucose residues were highly potent E-selectin receptors, constituting more than 60% of the E-selectin-binding activity in the extract. These glycolipids are expressed on human blood neutrophils at densities exceeding those required to support E-selectin-mediated tethering and rolling. Blocking glycosphingolipid biosynthesis in cultured human neutrophils diminished E-selectin, but not P-selectin, adhesion. The data support the conclusion that on human neutrophils the glycosphingolipid NeuAcalpha2-3Galbeta1-4GlcNAcbeta1-3[Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3](2)[Galbeta1-4GlcNAcbeta1-3](2)Galbeta1-4GlcbetaCer (and closely related structures) are functional E-selectin receptors.


Eukaryotic Cell | 2007

Self-aggregation of Cryptococcus neoformans capsular glucuronoxylomannan is dependent on divalent cations.

Leonardo Nimrichter; Susana Frases; Leonardo P. Cinelli; Nathan B. Viana; Antonio Nakouzi; Luiz R. Travassos; Arturo Casadevall; Marcio L. Rodrigues

ABSTRACT The capsular components of the human pathogen Cryptococcus neoformans are transported to the extracellular space and then used for capsule enlargement by distal growth. It is not clear, however, how the glucuronoxylomannan (GXM) fibers are incorporated into the capsule. In the present study, we show that concentration of C. neoformans culture supernatants by ultrafiltration results in the formation of highly viscous films containing pure polysaccharide, providing a novel, nondenaturing, and extremely rapid method to isolate extracellular GXM. The weight-averaged molecular mass of GXM in the film, determined using multiangle laser light scattering, was ninefold smaller than that of GXM purified from culture supernatants by differential precipitation with cetyl trimethyl ammonium bromide (CTAB). Polysaccharides obtained either by ultrafiltration or by CTAB-mediated precipitation showed different reactivities with GXM-specific monoclonal antibodies. Viscosity analysis associated with inductively coupled plasma mass spectrometry and measurements of zeta potential in the presence of different ions implied that polysaccharide aggregation was a consequence of the interaction between the carboxyl groups of glucuronic acid and divalent cations. Consistent with this observation, capsule enlargement in living C. neoformans cells was influenced by Ca2+ in the culture medium. These results suggest that capsular assembly in C. neoformans results from divalent cation-mediated self-aggregation of extracellularly accumulated GXM molecules.


Eukaryotic Cell | 2008

Cryptococcus neoformans Capsular Polysaccharide and Exopolysaccharide Fractions Manifest Physical, Chemical, and Antigenic Differences

Susana Frases; Leonardo Nimrichter; Nathan B. Viana; Antonio Nakouzi; Arturo Casadevall

ABSTRACT The human pathogenic fungus Cryptococcus neoformans has a large polysaccharide (PS) capsule and releases copious amounts of PS into cultures and infected tissues. The capsular PS is a major virulence factor that can elicit protective antibody responses. PS recovered from culture supernatants has historically provided an ample and convenient source of material for structural and immunological studies. Two major assumptions in such studies are that the structural features of the exopolysaccharide material faithfully mirror those of capsular PS and that the isolation methods do not change PS properties. However, a comparison of exopolysaccharide made by two isolation techniques with capsular PS stripped from cells with gamma radiation or dimethyl sulfoxide revealed significant differences in glycosyl composition, mass, size, charge, viscosity, circular-dichroism spectra, and reactivity with monoclonal antibodies. Our results strongly suggest that exopolysaccharides and capsular PS are structurally different. A noteworthy finding was that PS made by cetyltrimethylammonium bromide precipitation had a larger mass and a different conformation than PS isolated by concentration and filtration, suggesting that the method most commonly used to purify glucuronoxylomannan alters the PS. Hence, the method used to isolate PS can significantly influence the structural and antigenic properties of the product. Our findings have important implications for current views of the relationship between capsular PS and exopolysaccharides, for the generation of PS preparations suitable for immunological studies, and for the formulation of PS-based vaccines for the prevention of cryptococcosis.


Molecular Microbiology | 2012

The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans.

Karin Thevissen; Patricia de Mello Tavares; Deming Xu; Jill R. Blankenship; Davy Vandenbosch; Jolanta Idkowiak-Baldys; Gilmer Govaert; Anna Bink; Sonia Rozental; Piet W. J. de Groot; Talya R. Davis; Carol A. Kumamoto; Gabriele Vargas; Leonardo Nimrichter; Tom Coenye; Aaron P. Mitchell; Terry Roemer; Yusuf A. Hannun; Bruno P. A. Cammue

The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2‐hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast‐to‐hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analysed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24‐ceramides in membranes of RsAFP2‐treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide molecules

Susana Frases; Bruno Pontes; Leonardo Nimrichter; Nathan B. Viana; Marcio L. Rodrigues; Arturo Casadevall

The human pathogenic fungus Cryptococcus neoformans has a distinctive polysaccharide (PS) capsule that enlarges during infection. The capsule is essential for virulence, but the mechanism for capsular growth is unknown. In the present study, we used dynamic light scattering (LS) analysis of capsular PS and optical tweezers (OT) to explore the architecture of the capsule. Analysis of capsular PS from cells with small and large capsules by dynamic LS revealed a linear correlation between PS effective diameter and microscopic capsular diameter. This result implied that capsule growth was achieved by the addition of molecules with larger effective diameter, such that some molecules can span the entire diameter of the capsule. Measurement of polystyrene bead penetration of C. neoformans capsules by using OT techniques revealed that the outer regions were penetrable, but not the inner regions. Our results provide a mechanism for capsular enlargement based on the axial lengthening of PS molecules and suggest a model for the architecture of a eukaryotic microbial capsule.


Cellular Microbiology | 2015

Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans.

Gabriele Vargas; Juliana Dutra B. Rocha; Débora L. Oliveira; Priscila C. Albuquerque; Susana Frases; Suelen Silvana dos Santos; Joshua D. Nosanchuk; Andre M. O. Gomes; Lia Carolina Soares Medeiros; Kildare Miranda; Tiago J. P. Sobreira; Ernesto S. Nakayasu; Emma Arigi; Arturo Casadevall; Allan J. Guimarães; Marcio L. Rodrigues; Célio G. Freire-de-Lima; Igor C. Almeida; Leonardo Nimrichter

The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans‐cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow‐derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin‐layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)‐12, transforming growth factor‐beta (TGF‐β) and IL‐10. Similarly, EV‐treated DC produced IL‐12p40, IL‐10 and tumour necrosis factor‐alpha. In addition, EV treatment induced the up‐regulation of CD86 and major histocompatibility complex class‐II (MHC‐II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.

Collaboration


Dive into the Leonardo Nimrichter's collaboration.

Top Co-Authors

Avatar

Marcio L. Rodrigues

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Frases

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Joshua D. Nosanchuk

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fernanda L. Fonseca

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Allan J. Guimarães

Federal Fluminense University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Débora L. Oliveira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Ernesto S. Nakayasu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Márcio Rodrigues

University of Beira Interior

View shared research outputs
Researchain Logo
Decentralizing Knowledge