Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allan Konopka is active.

Publication


Featured researches published by Allan Konopka.


PLOS Computational Biology | 2010

Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation.

Grigoriy E. Pinchuk; Eric A. Hill; Oleg V. Geydebrekht; Jessica De Ingeniis; Xiaolin Zhang; Andrei L. Osterman; James H. Scott; Samantha B. Reed; Margaret F. Romine; Allan Konopka; Alexander S. Beliaev; Jim K. Fredrickson; Jennifer L. Reed

Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i) used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii) developed an approach to identify cycles (such as futile cycles and circulations), (iii) classified how reaction usage affects cellular growth, (iv) predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v) used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism at a systems level.


Journal of Contaminant Hydrology | 2013

Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater–river interaction zone

John M. Zachara; Philip E. Long; John R. Bargar; James A. Davis; Patricia M. Fox; Jim K. Fredrickson; Mark D. Freshley; Allan Konopka; Chongxuan Liu; James P. McKinley; Mark L. Rockhold; Kenneth H. Williams; Steven B. Yabusaki

We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (<one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water interaction that are common world-wide.


Environmental Microbiology | 2012

Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site

Xueju Lin; David W. Kennedy; Jim K. Fredrickson; Bruce N. Bjornstad; Allan Konopka

Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington state (USA) was investigated by analysing 21 samples recovered from depths of 9-52u2003m. Approximately 8000 near full-length 16S rRNA gene sequences were analysed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (operational taxonomic units at the 97% identity level) respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (>u2003700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (c. 90%) of Proteobacteria. The bacterial community in the oxic sediments contained not only members of nine well-recognized phyla but also an unusually high proportion of three candidate divisions (GAL15, NC10 and SPAM). Additionally, 13 novel phylogenetic orders were identified within the Deltaproteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.


PLOS Computational Biology | 2012

Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

Trang T. Vu; Sergey M. Stolyar; Grigoriy E. Pinchuk; Eric A. Hill; Leo A. Kucek; Roslyn N. Brown; Mary S. Lipton; Andrei L. Osterman; Jim K. Fredrickson; Allan Konopka; Alexander S. Beliaev; Jennifer L. Reed

Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values.


Applied and Environmental Microbiology | 2011

Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions

Grigoriy E. Pinchuk; Oleg V. Geydebrekht; Eric A. Hill; Jennifer L. Reed; Allan Konopka; Alexander S. Beliaev; Jim K. Fredrickson

ABSTRACT Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O2, lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O2 limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force.


Microbial Ecology | 2012

Modeling Microbial Dynamics in Heterogeneous Environments: Growth on Soil Carbon Sources

Haluk Resat; Vanessa L. Bailey; Lee Ann McCue; Allan Konopka

We have developed a new kinetic model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment and by different strategies for hydrolysis of polymeric carbon. The hybrid model represented the dynamics of substrates and enzymes using a continuum representation and the dynamics of the cells were modeled individually. Individual-based biological model allowed us to explicitly simulate microbial diversity, and to model cell physiology as regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions in heterogeneous media such as soil and by the functional attributes of individual microbes. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6–20-μm size portions of the soil physical structure and in 111-μm size soil aggregates with a random pore structure. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences suggested different functional niches for these two microbe types in cellulose utilization. Our model predicted an emergent behavior in which co-existence of membrane-associated hydrolase and extracellular hydrolases releasing organisms led to higher cellulose utilization efficiency and reduced stochasticity. Our analysis indicated that their co-existence mutually benefits these organisms, where basal cellulose degradation activity by membrane-associated hydrolase-expressing cells shortened the soluble hydrolase buildup time and, when enzyme buildup allowed for cellulose degradation to be fast enough to sustain exponential growth, all the organisms in the community shared the soluble carbon product and grew together. Although pore geometry affected the kinetics of cellulose degradation, the patterns observed for the bacterial community dynamics in the 6–20 μm-sized micro-pores were relevant to the dynamics in the more complex 111-μm-sized porous soil aggregates, implying that micro-scale studies can be useful approximations to aggregate scale studies when local effects on microbial dynamics are studied. As shown with examples in this study, various functional niches of the bacterial communities can be investigated using complex predictive mathematical models where the role of key environmental aspects such as the heterogeneous three-dimensional structure, functional niches of the community members, and environmental biochemical processes are directly connected to microbial metabolism and maintenance in an integrated model.


Biotechnology Journal | 2013

Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production.

Trang T. Vu; Eric A. Hill; Leo A. Kucek; Allan Konopka; Alexander S. Beliaev; Jennifer L. Reed

Cyanobacteria are ideal metabolic engineering platforms for carbon-neutral biotechnology because they directly convert CO2 to a range of valuable products. In this study, we present a computational assessment of biochemical production in Synechococcus sp. PCC 7002 (Synechococcus 7002), a fast growing cyanobacterium whose genome has been sequenced, and for which genetic modification methods have been developed. We evaluated the maximum theoretical yields (mol product per mol CO2 or mol photon) of producing various chemicals under photoautotrophic and dark conditions using a genome-scale metabolic model of Synechococcus 7002. We found that the yields were lower under dark conditions, compared to photoautotrophic conditions, due to the limited amount of energy and reductant generated from glycogen. We also examined the effects of photon and CO2 limitations on chemical production under photoautotrophic conditions. In addition, using various computational methods such as minimization of metabolic adjustment (MOMA), relative metabolic change (RELATCH), and OptORF, we identified gene-knockout mutants that are predicted to improve chemical production under photoautotrophic and/or dark anoxic conditions. These computational results are useful for metabolic engineering of cyanobacteria to synthesize value-added products.


Frontiers in Microbiology | 2015

Estimating and mapping ecological processes influencing microbial community assembly

James C. Stegen; Xueju Lin; Jim K. Fredrickson; Allan Konopka

Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.


Mbio | 2012

Sustained H2 Production Driven by Photosynthetic Water Splitting in a Unicellular Cyanobacterium

Matthew R. Melnicki; Grigoriy E. Pinchuk; Eric A. Hill; Leo A. Kucek; Jim K. Fredrickson; Allan Konopka; Alexander S. Beliaev

ABSTRACT The relationship between dinitrogenase-driven H2 production and oxygenic photosynthesis was investigated in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142, using a novel custom-built photobioreactor equipped with advanced process control. Continuously illuminated nitrogen-deprived cells evolved H2 at rates up to 400 µmol ⋅ mg Chl−1 ⋅ h−1 in parallel with uninterrupted photosynthetic O2 production. Notably, sustained coproduction of H2 and O2 occurred over 100 h in the presence of CO2, with both gases displaying inverse oscillations which eventually dampened toward stable rates of 125 and 90 µmol ⋅ mg Chl−1 ⋅ h−1, respectively. Oscillations were not observed when CO2 was omitted, and instead H2 and O2 evolution rates were positively correlated. The sustainability of the process was further supported by stable chlorophyll content, maintenance of baseline protein and carbohydrate levels, and an enhanced capacity for linear electron transport as measured by chlorophyll fluorescence throughout the experiment. In situ light saturation analyses of H2 production displayed a strong dose dependence and lack of O2 inhibition. Inactivation of photosystem II had substantial long-term effects but did not affect short-term H2 production, indicating that the process is also supported by photosystem I activity and oxidation of endogenous glycogen. However, mass balance calculations suggest that carbohydrate consumption in the light may, at best, account for no more than 50% of the reductant required for the corresponding H2 production over that period. Collectively, our results demonstrate that uninterrupted H2 production in unicellular cyanobacteria can be fueled by water photolysis without the detrimental effects of O2 and have important implications for sustainable production of biofuels. IMPORTANCE The study provides an important insight into the photophysiology of light-driven H2 production by the nitrogen-fixing cyanobacterium Cyanothece sp. strain ATCC 51142. This work is also of significance for biotechnology, supporting the feasibility of “direct biophotolysis.” The sustainability of the process, highlighted by prolonged gas evolution with no clear sign of significant decay or apparent photodamage, provides a foundation for the future development of an effective, renewable, and economically efficient bio-H2 production process. The study provides an important insight into the photophysiology of light-driven H2 production by the nitrogen-fixing cyanobacterium Cyanothece sp. strain ATCC 51142. This work is also of significance for biotechnology, supporting the feasibility of “direct biophotolysis.” The sustainability of the process, highlighted by prolonged gas evolution with no clear sign of significant decay or apparent photodamage, provides a foundation for the future development of an effective, renewable, and economically efficient bio-H2 production process.


ACS Chemical Biology | 2014

Live cell chemical profiling of temporal redox dynamics in a photoautotrophic cyanobacterium

Natalie C. Sadler; Matthew R. Melnicki; Margrethe H. Serres; Eric D. Merkley; William B. Chrisler; Eric A. Hill; Margaret F. Romine; Sangtae Kim; Erika M. Zink; Suchitra Datta; Richard D. Smith; Alexander S. Beliaev; Allan Konopka; Aaron T. Wright

Protein reduction-oxidation (redox) modification is an important mechanism that allows microorganisms to sense environmental changes and initiate cellular responses. We have developed a quantitative chemical probe approach for live cell labeling and imaging of proteins that are sensitive to redox modifications. We utilize this in vivo strategy to identify 176 proteins undergoing ∼5-10-fold dynamic redox change in response to nutrient limitation and subsequent replenishment in the photoautotrophic cyanobacterium Synechococcus sp. PCC 7002. We detect redox changes in as little as 30 s after nutrient perturbation and oscillations in reduction and oxidation for 60 min following the perturbation. Many of the proteins undergoing dynamic redox transformations participate in the major components for the production (photosystems and electron transport chains) or consumption (Calvin-Benson cycle and protein synthesis) of reductant and/or energy in photosynthetic organisms. Thus, our in vivo approach reveals new redox-susceptible proteins and validates those previously identified in vitro.

Collaboration


Dive into the Allan Konopka's collaboration.

Top Co-Authors

Avatar

Alexander S. Beliaev

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jim K. Fredrickson

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Eric A. Hill

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Grigoriy E. Pinchuk

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James K. Fredrickson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James P. McKinley

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Reed

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

John M. Zachara

United States Department of Energy

View shared research outputs
Researchain Logo
Decentralizing Knowledge