Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Wilkins is active.

Publication


Featured researches published by Michael J. Wilkins.


Science | 2012

Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla

Kelly C. Wrighton; Brian C. Thomas; Itai Sharon; Christopher S. Miller; Cindy J. Castelle; Nathan C. VerBerkmoes; Michael J. Wilkins; Robert L. Hettich; Mary S. Lipton; Kenneth H. Williams; Philip E. Long; Jillian F. Banfield

Bacterial PERegrinations Many branches of the bacterial domain of life are only known from sequences that turn up in metagenomic analyses and are still only named by acronym—for example, the phylum-level groups BD1-5, OP11, OD1, and the PERs. The parent organisms are probably widespread, but they have not been cultured, and very little is known about their metabolisms or their contributions and functions in the natural environment. Wrighton et al. (p. 1661) pumped acetate into an aquifer in Colorado to prompt the naturally occurring bacteria into action and then, from the runoff, filtered out the smaller microbial cells for further analysis. Mass-spectrometry–based proteomics was used to test for functional activity, and 49 distinct genomes were recovered, many with surprising functional attributes. All of the recovered organisms appeared to be strict anaerobes with a full glycolytic pathway that were capable of augmenting energy production by coupling proton-pumping activity to adenosine triphosphate synthase. Several hydrogenases were found that seemed to be able to switch between hydrogen production and polysulfide reduction, depending on the substrate available. Notably, carbon dioxide assimilation was a common feature, with many genes having similarity to those of archaea. Near-complete reconstruction of the genomes of 21 widespread uncultured environmental bacteria reveals metabolic novelties. BD1-5, OP11, and OD1 bacteria have been widely detected in anaerobic environments, but their metabolisms remain unclear owing to lack of cultivated representatives and minimal genomic sampling. We uncovered metabolic characteristics for members of these phyla, and a new lineage, PER, via cultivation-independent recovery of 49 partial to near-complete genomes from an acetate-amended aquifer. All organisms were nonrespiring anaerobes predicted to ferment. Three augment fermentation with archaeal-like hybrid type II/III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) that couples adenosine monophosphate salvage with CO2 fixation, a pathway not previously described in Bacteria. Members of OD1 reduce sulfur and may pump protons using archaeal-type hydrogenases. For six organisms, the UGA stop codon is translated as tryptophan. All bacteria studied here may play previously unrecognized roles in hydrogen production, sulfur cycling, and fermentation of refractory sedimentary carbon.


Nature | 2015

Unusual biology across a group comprising more than 15% of domain Bacteria

Christopher T. Brown; Laura A. Hug; Brian C. Thomas; Itai Sharon; Cindy J. Castelle; Andrea Singh; Michael J. Wilkins; Kelly C. Wrighton; Kenneth H. Williams; Jillian F. Banfield

A prominent feature of the bacterial domain is a radiation of major lineages that are defined as candidate phyla because they lack isolated representatives. Bacteria from these phyla occur in diverse environments and are thought to mediate carbon and hydrogen cycles. Genomic analyses of a few representatives suggested that metabolic limitations have prevented their cultivation. Here we reconstructed 8 complete and 789 draft genomes from bacteria representing >35 phyla and documented features that consistently distinguish these organisms from other bacteria. We infer that this group, which may comprise >15% of the bacterial domain, has shared evolutionary history, and describe it as the candidate phyla radiation (CPR). All CPR genomes are small and most lack numerous biosynthetic pathways. Owing to divergent 16S ribosomal RNA (rRNA) gene sequences, 50–100% of organisms sampled from specific phyla would evade detection in typical cultivation-independent surveys. CPR organisms often have self-splicing introns and proteins encoded within their rRNA genes, a feature rarely reported in bacteria. Furthermore, they have unusual ribosome compositions. All are missing a ribosomal protein often absent in symbionts, and specific lineages are missing ribosomal proteins and biogenesis factors considered universal in bacteria. This implies different ribosome structures and biogenesis mechanisms, and underlines unusual biology across a large part of the bacterial domain.


Geomicrobiology Journal | 2011

Acetate availability and its influence on sustainable bioremediation of Uranium-contaminated groundwater

Kenneth H. Williams; Philip E. Long; James A. Davis; Michael J. Wilkins; A. Lucie N'Guessan; Carl I. Steefel; Li Yang; Darrell R. Newcomer; Frank A. Spane; Lee J. Kerkhof; Lora R. McGuinness; Richard Dayvault; Derek R. Lovley

Field biostimulation experiments at the U.S. Department of Energys Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium concentrations in groundwater can be decreased to levels below the U.S. Environmental Protection Agencys (EPA) drinking water standard (0.126 μM). During successive summer experiments – referred to as “Winchester” (2007) and “Big Rusty” (2008) - acetate was added to the aquifer to stimulate the activity of indigenous dissimilatory metal-reducing bacteria capable of reductively immobilizing uranium. The two experiments differed in the length of injection (31 vs. 110 days), the maximum concentration of acetate (5 vs. 30 mM), and the extent to which iron reduction (“Winchester”) or sulfate reduction (“Big Rusty”) was the predominant metabolic process. In both cases, rapid removal of U(VI) from groundwater occurred at calcium concentrations (6 mM) and carbonate alkalinities (8 meq/L) where Ca-UO2-CO3 ternary complexes constitute >90% of uranyl species in groundwater. Complete consumption of acetate and increased alkalinity (>30 meq/L) accompanying the onset of sulfate reduction corresponded to temporary increases in U(VI); however, by increasing acetate concentrations in excess of available sulfate (10 mM), low U(VI) concentrations (0.1–0.05 μM) were achieved for extended periods of time (>140 days). Uniform delivery of acetate during “Big Rusty” was impeded due to decreases in injection well permeability, likely resulting from biomass accumulation and carbonate and sulfide mineral precipitation. Such decreases were not observed during the short-duration “Winchester” experiment. Terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes demonstrated that Geobacter sp. and Geobacter-like strains dominated the groundwater community profile during iron reduction, with 13C stable isotope probing (SIP) results confirming these strains were actively utilizing acetate to replicate their genome during the period of optimal U(VI) removal. Gene transcript levels during “Big Rusty” were quantified for Geobacter-specific citrate synthase (gltA), with ongoing transcription during sulfate reduction indicating that members of the Geobacteraceae were still active and likely contributing to U(VI) removal. The persistence of reducible Fe(III) in sediments recovered from an area of prolonged (110-day) sulfate reduction is consistent with this conclusion. These results indicate that acetate availability and its ability to sustain the activity of iron- and uranyl-respiring Geobacter strains during sulfate reduction exerts a primary control on optimized U(VI) removal from groundwater at the Rifle IFRC site over extended time scales (>50 days).


Current Biology | 2015

Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling

Cindy J. Castelle; Kelly C. Wrighton; Brian C. Thomas; Laura A. Hug; Christopher T. Brown; Michael J. Wilkins; Kyle R. Frischkorn; Susannah G. Tringe; Andrea Singh; Lye Meng Markillie; Ronald Taylor; Kenneth H. Williams; Jillian F. Banfield

BACKGROUND Archaea represent a significant fraction of Earths biodiversity, yet they remain much less well understood than Bacteria. Gene surveys, a few metagenomic studies, and some single-cell sequencing projects have revealed numerous little-studied archaeal phyla. Certain lineages appear to branch deeply and may be part of a major phylum radiation. The structure of this radiation and the physiology of the organisms remain almost unknown. RESULTS We used genome-resolved metagenomic analyses to investigate the diversity, genomes sizes, metabolic capacities, and potential roles of Archaea in terrestrial subsurface biogeochemical cycles. We sequenced DNA from complex sediment and planktonic consortia from an aquifer adjacent to the Colorado River (USA) and reconstructed the first complete genomes for Archaea using cultivation-independent methods. To provide taxonomic context, we analyzed an additional 151 newly sampled archaeal sequences. We resolved two new phyla within a major, apparently deep-branching group of phyla (a superphylum). The organisms have small genomes, and metabolic predictions indicate that their primary contributions to Earths biogeochemical cycles involve carbon and hydrogen metabolism, probably associated with symbiotic and/or fermentation-based lifestyles. CONCLUSIONS The results dramatically expand genomic sampling of the domain Archaea and clarify taxonomic designations within a major superphylum. This study, in combination with recently published work on bacterial phyla lacking cultivated representatives, reveals a fascinating phenomenon of major radiations of organisms with small genomes, novel proteome composition, and strong interdependence in both domains.


Nature Communications | 2016

Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system.

Karthik Anantharaman; Christopher T. Brown; Laura A. Hug; Itai Sharon; Cindy J. Castelle; Alexander J. Probst; Brian C. Thomas; Andrea Singh; Michael J. Wilkins; Ulas Karaoz; Eoin L. Brodie; Kenneth H. Williams; Susan S. Hubbard; Jillian F. Banfield

The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earths biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.


Applied and Environmental Microbiology | 2009

Proteogenomic Monitoring of Geobacter Physiology during Stimulated Uranium Bioremediation

Michael J. Wilkins; Nathan C. VerBerkmoes; Kenneth H. Williams; Stephen J. Callister; Paula J. Mouser; Hila Elifantz; N'guessan Al; Brian C. Thomas; Carrie D. Nicora; Manesh B Shah; Paul E. Abraham; Mary S. Lipton; Derek R. Lovley; Robert L. Hettich; Philip E. Long; Jillian F. Banfield

ABSTRACT Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.


The ISME Journal | 2014

Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer

Kelly C. Wrighton; Cindy J. Castelle; Michael J. Wilkins; Laura A. Hug; Itai Sharon; Brian C. Thomas; Kim M. Handley; Sean W. Mullin; Carrie D. Nicora; Andrea Singh; Mary S. Lipton; Philip E. Long; Kenneth H. Williams; Jillian F. Banfield

Fermentation-based metabolism is an important ecosystem function often associated with environments rich in organic carbon, such as wetlands, sewage sludge and the mammalian gut. The diversity of microorganisms and pathways involved in carbon and hydrogen cycling in sediments and aquifers and the impacts of these processes on other biogeochemical cycles remain poorly understood. Here we used metagenomics and proteomics to characterize microbial communities sampled from an aquifer adjacent to the Colorado River at Rifle, CO, USA, and document interlinked microbial roles in geochemical cycling. The organic carbon content in the aquifer was elevated via acetate amendment of the groundwater occurring over 2 successive years. Samples were collected at three time points, with the objective of extensive genome recovery to enable metabolic reconstruction of the community. Fermentative community members include organisms from a new phylum, Melainabacteria, most closely related to Cyanobacteria, phylogenetically novel members of the Chloroflexi and Bacteroidales, as well as candidate phyla genomes (OD1, BD1-5, SR1, WWE3, ACD58, TM6, PER and OP11). These organisms have the capacity to produce hydrogen, acetate, formate, ethanol, butyrate and lactate, activities supported by proteomic data. The diversity and expression of hydrogenases suggests the importance of hydrogen metabolism in the subsurface. Our proteogenomic data further indicate the consumption of fermentation intermediates by Proteobacteria can be coupled to nitrate, sulfate and iron reduction. Thus, fermentation carried out by previously unknown members of sediment microbial communities may be an important driver of nitrogen, hydrogen, sulfur, carbon and iron cycling.


Environmental Microbiology | 2016

Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages.

Laura A. Hug; Brian C. Thomas; Itai Sharon; Christopher T. Brown; Ritin Sharma; Robert L. Hettich; Michael J. Wilkins; Kenneth H. Williams; Andrea Singh; Jillian F. Banfield

Nitrogen, sulfur and carbon fluxes in the terrestrial subsurface are determined by the intersecting activities of microbial community members, yet the organisms responsible are largely unknown. Metagenomic methods can identify organisms and functions, but genome recovery is often precluded by data complexity. To address this limitation, we developed subsampling assembly methods to re-construct high-quality draft genomes from complex samples. We applied these methods to evaluate the interlinked roles of the most abundant organisms in biogeochemical cycling in the aquifer sediment. Community proteomics confirmed these activities. The eight most abundant organisms belong to novel lineages, and two represent phyla with no previously sequenced genome. Four organisms are predicted to fix carbon via the Calvin-Benson-Bassham, Wood-Ljungdahl or 3-hydroxyproprionate/4-hydroxybutarate pathways. The profiled organisms are involved in the network of denitrification, dissimilatory nitrate reduction to ammonia, ammonia oxidation and sulfate reduction/oxidation, and require substrates supplied by other community members. An ammonium-oxidizing Thaumarchaeote is the most abundant community member, despite low ammonium concentrations in the groundwater. This organism likely benefits from two other relatively abundant organisms capable of producing ammonium from nitrate, which is abundant in the groundwater. Overall, dominant members of the microbial community are interconnected through exchange of geochemical resources.


Nature Communications | 2016

Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover

James C. Stegen; James K. Fredrickson; Michael J. Wilkins; Allan Konopka; William C. Nelson; Evan V. Arntzen; William B. Chrisler; Rosalie K. Chu; Robert E. Danczak; Sarah J. Fansler; David W. Kennedy; Charles T. Resch; Malak M. Tfaily

Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater–surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater–surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds.


The ISME Journal | 2013

Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation

Ludovic Giloteaux; Dawn E. Holmes; Kenneth H. Williams; Kelly C. Wrighton; Michael J. Wilkins; Alison P. Montgomery; Jessica A. Smith; Roberto Orellana; Courtney A Thompson; Thomas J Roper; Philip E. Long; Derek R. Lovley

The possibility of arsenic release and the potential role of Geobacter in arsenic biogeochemistry during in situ uranium bioremediation was investigated because increased availability of organic matter has been associated with substantial releases of arsenic in other subsurface environments. In a field experiment conducted at the Rifle, CO study site, groundwater arsenic concentrations increased when acetate was added. The number of transcripts from arrA, which codes for the α-subunit of dissimilatory As(V) reductase, and acr3, which codes for the arsenic pump protein Acr3, were determined with quantitative reverse transcription-PCR. Most of the arrA (>60%) and acr3-1 (>90%) sequences that were recovered were most similar to Geobacter species, while the majority of acr3-2 (>50%) sequences were most closely related to Rhodoferax ferrireducens. Analysis of transcript abundance demonstrated that transcription of acr3-1 by the subsurface Geobacter community was correlated with arsenic concentrations in the groundwater. In contrast, Geobacter arrA transcript numbers lagged behind the major arsenic release and remained high even after arsenic concentrations declined. This suggested that factors other than As(V) availability regulated the transcription of arrA in situ, even though the presence of As(V) increased the transcription of arrA in cultures of Geobacter lovleyi, which was capable of As(V) reduction. These results demonstrate that subsurface Geobacter species can tightly regulate their physiological response to changes in groundwater arsenic concentrations. The transcriptomic approach developed here should be useful for the study of a diversity of other environments in which Geobacter species are considered to have an important influence on arsenic biogeochemistry.

Collaboration


Dive into the Michael J. Wilkins's collaboration.

Top Co-Authors

Avatar

Kenneth H. Williams

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Philip E. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek R. Lovley

University of Massachusetts Boston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary S. Lipton

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paula J. Mouser

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carrie D. Nicora

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dawn E. Holmes

Western New England University

View shared research outputs
Researchain Logo
Decentralizing Knowledge