Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allan R. Jones is active.

Publication


Featured researches published by Allan R. Jones.


Nature Neuroscience | 2010

A robust and high-throughput Cre reporting and characterization system for the whole mouse brain

Linda Madisen; Theresa A. Zwingman; Susan M. Sunkin; Seung Wook Oh; Hatim A. Zariwala; Hong Gu; Lydia Ng; Richard D. Palmiter; Michael Hawrylycz; Allan R. Jones; Ed Lein; Hongkui Zeng

The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universally responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in several Cre-driver lines, including new Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation.


Nature | 2012

An anatomically comprehensive atlas of the adult human brain transcriptome

Michael Hawrylycz; Ed Lein; Angela L. Guillozet-Bongaarts; Elaine H. Shen; Lydia Ng; Jeremy A. Miller; Louie N. van de Lagemaat; Kimberly A. Smith; Amanda Ebbert; Zackery L. Riley; Chris Abajian; Christian F. Beckmann; Amy Bernard; Darren Bertagnolli; Andrew F. Boe; Preston M. Cartagena; M. Mallar Chakravarty; Mike Chapin; Jimmy Chong; Rachel A. Dalley; Barry Daly; Chinh Dang; Suvro Datta; Nick Dee; Tim Dolbeare; Vance Faber; David Feng; David Fowler; Jeff Goldy; Benjamin W. Gregor

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Nature | 2014

A mesoscale connectome of the mouse brain

Seung Wook Oh; Julie A. Harris; Lydia Ng; Brent Winslow; Nicholas Cain; Stefan Mihalas; Quanxin Wang; Chris Lau; Leonard Kuan; Alex Henry; Marty T. Mortrud; Benjamin Ouellette; Thuc Nghi Nguyen; Staci A. Sorensen; Clifford R. Slaughterbeck; Wayne Wakeman; Yang Li; David Feng; Anh Ho; Eric Nicholas; Karla E. Hirokawa; Phillip Bohn; Kevin M. Joines; Hanchuan Peng; Michael Hawrylycz; John Phillips; John G. Hohmann; Paul Wohnoutka; Charles R. Gerfen; Christof Koch

Comprehensive knowledge of the brain’s wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.


Nature Neuroscience | 2012

A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing

Linda Madisen; Tianyi Mao; Henner Koch; Jia Min Zhuo; Antal Berényi; Shigeyoshi Fujisawa; Yun Wei A Hsu; Alfredo J. Garcia; Xuan Gu; Sébastien Zanella; Jolene Kidney; Hong Gu; Yimei Mao; Bryan M. Hooks; Edward S. Boyden; György Buzsáki; Jan-Marino Ramirez; Allan R. Jones; Karel Svoboda; Xue Han; Eric E. Turner; Hongkui Zeng

Cell type–specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of four knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0 and archaerhodopsin Arch-ER2. All four transgenes mediated Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent and inducible nature of our ChR2 mice represents a significant advance over previous lines, and the Arch-ER2 and eNpHR3.0 mice are to our knowledge the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy.


Nature Genetics | 2000

Widespread aneuploidy revealed by DNA microarray expression profiling

Timothy Hughes; Christopher J. Roberts; Hongyue Dai; Allan R. Jones; Michael R. Meyer; David J. Slade; Julja Burchard; Sally Dow; Teresa R. Ward; Matthew J. Kidd; Stephen H. Friend; Matthew J. Marton

Expression profiling using DNA microarrays holds great promise for a variety of research applications, including the systematic characterization of genes discovered by sequencing projects. To demonstrate the general usefulness of this approach, we recently obtained expression profiles for nearly 300 Saccharomyces cerevisiae deletion mutants. Approximately 8% of the mutants profiled exhibited chromosome-wide expression biases, leading to spurious correlations among profiles. Competitive hybridization of genomic DNA from the mutant strains and their isogenic parental wild-type strains showed they were aneuploid for whole chromosomes or chromosomal segments. Expression profile data published by several other laboratories also suggest the use of aneuploid strains. In five separate cases, the extra chromosome harboured a close homologue of the deleted gene; in two cases, a clear growth advantage for cells acquiring the extra chromosome was demonstrated. Our results have implications for interpreting whole-genome expression data, particularly from cells known to suffer genomic instability, such as malignant or immortalized cells.


Nature | 2014

Transcriptional landscape of the prenatal human brain

Jeremy A. Miller; Song Lin Ding; Susan M. Sunkin; Kimberly A. Smith; Lydia Ng; Aaron Szafer; Amanda Ebbert; Zackery L. Riley; Joshua J. Royall; Kaylynn Aiona; James M. Arnold; Crissa Bennet; Darren Bertagnolli; Krissy Brouner; Stephanie Butler; Shiella Caldejon; Anita Carey; Christine Cuhaciyan; Rachel A. Dalley; Nick Dee; Tim Dolbeare; Benjamin Facer; David Feng; Tim P. Fliss; Garrett Gee; Jeff Goldy; Lindsey Gourley; Benjamin W. Gregor; Guangyu Gu; Robert Howard

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Neuron | 2008

Genomic Anatomy of the Hippocampus

Carol L. Thompson; Sayan D. Pathak; Andreas Jeromin; Lydia Ng; Cameron Ross MacPherson; Marty T. Mortrud; Allison Cusick; Zackery L. Riley; Susan M. Sunkin; Amy Bernard; Ralph B. Puchalski; Fred H. Gage; Allan R. Jones; Vladimir B. Bajic; Michael Hawrylycz; Ed Lein

Availability of genome-scale in situ hybridization data allows systematic analysis of genetic neuroanatomical architecture. Within the hippocampus, electrophysiology and lesion and imaging studies demonstrate functional heterogeneity along the septotemporal axis, although precise underlying circuitry and molecular substrates remain uncharacterized. Application of unbiased statistical component analyses to genome-scale hippocampal gene expression data revealed robust septotemporal molecular heterogeneity, leading to the identification of a large cohort of genes with robust regionalized hippocampal expression. Manual mapping of heterogeneous CA3 pyramidal neuron expression patterns demonstrates an unexpectedly complex molecular parcellation into a relatively coherent set of nine expression domains in the septal/temporal and proximal/distal axes with reciprocal, nonoverlapping boundaries. Unique combinatorial profiles of adhesion molecules within these domains suggest corresponding differential connectivity, which is demonstrated for CA3 projections to the lateral septum using retrograde labeling. This complex, discrete molecular architecture provides a novel paradigm for predicting functional differentiation across the full septotemporal extent of the hippocampus.


Nature Reviews Neuroscience | 2009

The Allen Brain Atlas: 5 years and beyond

Allan R. Jones; Caroline C. Overly; Susan M. Sunkin

The Allen Brain Atlas, a Web-based, genome-wide atlas of gene expression in the adult mouse brain, was an experiment on a massive scale. The development of the atlas faced a combination of great technical challenges and a non-traditional open research model, and it encountered many hurdles on the path to completion and community adoption. Having overcome these challenges, it is now a fundamental tool for neuroscientists worldwide and has set the stage for the creation of other similar open resources. Nevertheless, there are many untapped opportunities for exploration.


PLOS Computational Biology | 2009

A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale

Jason W. Bohland; Caizhi Wu; Helen Barbas; Hemant Bokil; Mihail Bota; Hans C. Breiter; Hollis T. Cline; John C. Doyle; Peter J. Freed; Ralph J. Greenspan; Suzanne N. Haber; Michael Hawrylycz; Daniel G. Herrera; Claus C. Hilgetag; Z. Josh Huang; Allan R. Jones; Edward G. Jones; Harvey J. Karten; David Kleinfeld; Rolf Kötter; Henry A. Lester; John M. Lin; Brett D. Mensh; Shawn Mikula; Jaak Panksepp; Joseph L. Price; Joseph Safdieh; Clifford B. Saper; Nicholas D. Schiff; Jeremy D. Schmahmann

In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is critical, however, for both basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brainwide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brainwide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open-access data repository; compatibility with existing resources; and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.


Nature Neuroscience | 2009

An anatomic gene expression atlas of the adult mouse brain

Lydia Ng; Amy Bernard; Chris Lau; Caroline C. Overly; Hong-Wei Dong; Chihchau Kuan; Sayan D. Pathak; Susan M. Sunkin; Chinh Dang; Jason W. Bohland; Hemant Bokil; Partha P. Mitra; Luis Puelles; John G. Hohmann; David J. Anderson; Ed Lein; Allan R. Jones; Michael Hawrylycz

Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea).

Collaboration


Dive into the Allan R. Jones's collaboration.

Top Co-Authors

Avatar

Michael Hawrylycz

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Lydia Ng

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Ed Lein

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Susan M. Sunkin

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Amy Bernard

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Kimberly A. Smith

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

John G. Hohmann

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Rachel A. Dalley

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Jeremy A. Miller

Allen Institute for Brain Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge