Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allana Welsh is active.

Publication


Featured researches published by Allana Welsh.


The ISME Journal | 2011

Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning.

Mats Söderström; Maria Stenberg; David Bru; Maria Hellman; Allana Welsh; Frida Thomsen; Leif Klemedtson; Laurent Philippot; Sara Hallin

Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers.


Applied and Environmental Microbiology | 2014

Refined NrfA Phylogeny Improves PCR-Based nrfA Gene Detection

Allana Welsh; Joanne C. Chee-Sanford; Lynn M. Connor; Frank E. Löffler; Robert A. Sanford

ABSTRACT Dissimilatory nitrate reduction to ammonium (DNRA) and denitrification are contrasting microbial processes in the terrestrial nitrogen (N) cycle, in that the former promotes N retention and the latter leads to N loss (i.e., the formation of gaseous products). The nitrite reductase NrfA catalyzes nitrite reduction to ammonium, the enzyme associated with respiratory nitrite ammonification and the key step in DNRA. Although well studied biochemically, the diversity and phylogeny of this enzyme had not been rigorously analyzed. A phylogenetic analysis of 272 full-length NrfA protein sequences distinguished 18 NrfA clades with robust statistical support (>90% Bayesian posterior probabilities). Three clades possessed a CXXCH motif in the first heme-binding domain, whereas all other clades had a CXXCK motif in this location. The analysis further identified a KXRH or KXQH motif between the third and fourth heme-binding motifs as a conserved and diagnostic feature of all pentaheme NrfA proteins. PCR primers targeting a portion of the heme-binding motifs that flank this diagnostic region yielded the expected 250-bp-long amplicons with template DNA from eight pure cultures and 16 new nrfA-containing isolates. nrfA amplicons obtained with template DNA from two geomorphically distinct agricultural soils could be assigned to one of the 18 NrfA clades, providing support for this expanded classification. The extended NrfA phylogeny revealed novel diagnostic features of DNRA populations and will be useful to assess nitrate/nitrite fate in natural and engineered ecosystems.


FEMS Microbiology Ecology | 2011

Phenotypic and genotypic heterogeneity among closely related soil-borne N2- and N2O-producing Bacillus isolates harboring the nosZ gene

Christopher M. Jones; Allana Welsh; Ingela Noredal Throbäck; Peter Dörsch; Lars R. Bakken; Sara Hallin

Little is known about the genetic and phenotypic diversity of Gram-positive denitrifying bacteria. We compared the production of gaseous denitrification products for 14 closely related Bacillus soil isolates at pH 6 and 7 during 48-h batch incubations using a robotic gas-sampling apparatus. Primers targeting the nosZ gene encoding the nitrous oxide reductase were designed to confirm the presence of this gene in the isolates. The variation in the production of gaseous nitrogen products was compared with the genetic variation based on 16S rRNA gene sequences, genomic fingerprinting and nosZ sequences. The nosZ gene was detected in all isolates and all produced N(2) as the dominant end product at pH 7. Production of gaseous nitrogen products was more variable at pH 6, with different levels of NO and N(2) O production among the isolates, although minimal variation was observed among the 16S rRNA and nosZ gene sequences. One isolate was more divergent from the others based on genomic fingerprinting, and had two different nosZ gene copies, which coincided with the highest production of N(2) at pH 7 and the lack of intermediates at pH 6. Overall, our analysis suggests that genetic variation plays a role in the variation in N(2) O and N(2) production, but the variation in activity caused by acidification can be substantially greater than genotypic variation among closely related Bacillus.


Microbial Ecology | 2009

Variation in Frankia Populations of the Elaeagnus Host Infection Group in Nodules of Six Host Plant Species after Inoculation with Soil

Babur S. Mirza; Allana Welsh; Ghulam Rasul; Julie P. Rieder; Mark W. Paschke; Dittmar Hahn

The potential role of host plant species in the selection of symbiotic, nitrogen-fixing Frankia strains belonging to the Elaeagnus host infection group was assessed in bioassays with two Morella, three Elaeagnus, and one Shepherdia species as capture plants, inoculated with soil slurries made with soil collected from a mixed pine/grassland area in central Wisconsin, USA. Comparative sequence analysis of nifH gene fragments amplified from homogenates of at least 20 individual lobes of root nodules harvested from capture plants of each species confirmed the more promiscuous character of Morella cerifera and Morella pensylvanica that formed nodules with frankiae of the Alnus and the Elaeagnus host infection groups, while frankiae in nodules formed on Elaeagnus umbellata, Elaeagnus angustifolia, Elaeagnus commutata, and Shepherdia argentea generally belonged to the Elaeagnus host infection group. Diversity of frankiae of the Elaeagnus host infection groups was larger in nodules on both Morella species than in nodules formed on the other plant species. None of the plants, however, captured the entire diversity of nodule-forming frankiae. The distribution of clusters of Frankia populations and their abundance in nodules was unique for each of the plant species, with only one cluster being ubiquitous and most abundant while the remaining clusters were only present in nodules of one (six clusters) or two (two clusters) host plant species. These results demonstrate large effects of the host plant species in the selection of Frankia strains from soil for potential nodule formation and thus the significant effect of the choice of capture plant species in bioassays on diversity estimates in soil.


Systematic and Applied Microbiology | 2009

Diversity of frankiae in root nodules of Morella pensylvanica grown in soils from five continents.

Allana Welsh; Babur S. Mirza; Julie P. Rieder; Mark W. Paschke; Dittmar Hahn

Bioassays with Morella pensylvanica as capture plant and comparative sequence analyses of nifH gene fragments of Frankia populations in nodules formed were used to investigate the diversity of Frankia in soils over a broad geographic range, i.e., from sites in five continents (Africa, Europe, Asia, North America, and South America). Phylogenetic analyses of 522-bp nifH gene fragments of 100 uncultured frankiae from root nodules of M. pensylvanica and of 58 Frankia strains resulted in a clear differentiation between frankiae of the Elaeagnus and the Alnus host infection groups, with sequences from each group found in all soils and the assignment of all sequences to four and five clusters within these groups, respectively. All clusters were formed or dominated by frankiae obtained from one or two soils with single sequences occasionally present from frankiae of other soils. Variation within a cluster was generally low for sequences representing frankiae in nodules induced by the same soil, but large between sequences of frankiae originating from different soils. Three clusters, one within the Elaeagnus and two within the Alnus host infection groups, were represented entirely by uncultured frankiae with no sequences from cultured relatives available. These results demonstrate large differences in nodule-forming frankiae in five soils from a broad geographic range, but low diversity of nodule-forming Frankia populations within any of these soils.


Ecology | 2015

Microbial functional diversity enhances predictive models linking environmental parameters to ecosystem properties

Jeff R. Powell; Allana Welsh; Sara Hallin

Microorganisms drive biogeochemical processes, but linking these processes to real changes in microbial communities under field conditions is not trivial. Here, we present a model-based approach to estimate independent contributions of microbial community shifts to ecosystem properties. The approach was tested empirically, using denitrification potential as our model process, in a spatial survey of arable land encompassing a range of edaphic conditions and two agricultural production systems. Soil nitrate was the most important single predictor of denitrification potential (the change in Akaikes information criterion, corrected for sample size, ΔAIC(c) = 20.29); however, the inclusion of biotic variables (particularly the evenness and size of denitrifier communities [ΔAIC(c) = 12.02], and the abundance of one denitrifier genotype [ΔAIC(c) = 18.04]) had a substantial effect on model precision, comparable to the inclusion of abiotic variables (biotic R2 = 0.28, abiotic R2 = 0.50, biotic + abiotic R2 = 0.76). This approach provides a valuable tool for explicitly linking microbial communities to ecosystem functioning. By making this link, we have demonstrated that including aspects of microbial community structure and diversity in biogeochemical models can improve predictions of nutrient cycling in ecosystems and enhance our understanding of ecosystem functionality.


Systematic and Applied Microbiology | 2009

Diversity of frankiae in soils from five continents

Babur S. Mirza; Allana Welsh; Julie P. Rieder; Mark W. Paschke; Dittmar Hahn

Clone libraries of nifH gene fragments specific for the nitrogen-fixing actinomycete Frankia were generated from six soils obtained from five continents using a nested PCR. Comparative sequence analyses of all libraries (n=247 clones) using 96 to 97% similarity thresholds revealed the presence of three and four clusters of frankiae representing the Elaeagnus and the Alnus host infection groups, respectively. Diversity of frankiae was represented by fewer clusters (i.e., up to four in total) within individual libraries, with one cluster generally harboring the vast majority of sequences. Meta-analysis including sequences previously published for cultures (n=48) and for uncultured frankiae in root nodules of Morella pensylvanica formed in bioassays with the respective soils (n=121) revealed a higher overall diversity with four and six clusters of frankiae representing the Elaeagnus and the Alnus host infection groups, respectively, and displayed large differences in cluster assignments between sequences retrieved from clone libraries and those obtained from nodules, with assignments to the same cluster only rarely encountered for individual soils. These results demonstrate large differences between detectable Frankia populations in soil and those in root nodules indicating the inadequacy of bioassays for the analysis of frankiae in soil and the role of plants in the selection of frankiae from soil for root nodule formation.


Applied and Environmental Microbiology | 2009

Diversity of Frankia Populations in Root Nodules of Geographically Isolated Arizona Alder Trees in Central Arizona (United States)

Allana Welsh; Jeffrey O. Dawson; Gerald J. Gottfried; Dittmar Hahn

ABSTRACT The diversity of uncultured Frankia populations in root nodules of Alnus oblongifolia trees geographically isolated on mountaintops of central Arizona was analyzed by comparative sequence analyses of nifH gene fragments. Sequences were retrieved from Frankia populations in nodules of four trees from each of three mountaintops (n = 162) and their levels of diversity compared using spatial genetic clustering methods and single-nucleotide or 1, 3, or 5% sequence divergence thresholds. With the single-nucleotide threshold level, 45 different sequences with significant differences between the mountaintops were retrieved, with the southern site partitioning in a separate population from the two other sites. Some of these sequences were identical in nodules from different mountaintops and to those of strains isolated from around the world. A high level of diversity that resulted in the assignment of 14 clusters of sequences was also found on the 1% divergence level. Single-nucleotide and 1% divergence levels thus demonstrate microdiversity of frankiae in root nodules of A. oblongifolia trees and suggest a partitioning of diversity by site. At the 3 and 5% divergence levels, however, diversity was reduced to three clusters or one cluster, respectively, with no differentiation by mountaintop. Only at the 5% threshold level do all Frankia strains previously assigned to one genomic group cluster together.


Plant and Soil | 2010

Seasonal analyses of arbuscular mycorrhizae, nitrogen-fixing bacteria and growth performance of the salt marsh grass Spartina patens

Allana Welsh; David J. Burke; Erik P. Hamerlynck; Dittmar Hahn

Seasonal variation of arbuscular mycorrhizal fungi (AMF) in roots of the high salt marsh plant Spartina patens, the diversity of nitrogen-fixing bacteria in the rhizosphere and plant growth performance was studied at key stages of the growing season coinciding with major plant phenological stages, i.e., vegetative growth, reproduction and senescence. AMF colonization was highest during vegetative growth, with values declining during the growing season to the same level seen at plant dormancy. AMF colonization was reduced at lower depths in the sediments where anoxic conditions were observed and in plants treated with the systemic fungicide Benomyl. Only small changes in diversity of nitrogen-fixing bacteria in general and more specifically of those belonging to the ε-subdivision of Proteobacteria were detected during the season or between treatments by PCR-RFLP of nifH gene fragments with DNA as template for amplification; however, greater seasonal changes were displayed when cDNA was used as template for amplification as a proxy for gene expression and thus active bacteria. DGGE analyses of nifH gene fragments representing nitrogen-fixing bacteria of the ε-subdivision of Proteobacteria using both using DNA and cDNA as template showed highly diverse profiles that changed during the season and in response to treatment. Seasonal changes were observed for a suite of plant growth attributes and differences were observed between treatments, with higher values generally obtained on non-treated plants compared to Benomyl-treated plants. These differences were most pronounced during vegetative growth; however, differences between non-treated and Benomyl-treated plants were reduced seasonally and disappeared by the onset of senescence. This study demonstrates seasonal changes in AMF colonization on S. patens and in the community structure of nitrogen-fixing members of the ε-subdivision of Proteobacteria in the plant root zone. Plant growth performance changed seasonally with some effects of Benomyl-treatment.


FEMS Microbiology Ecology | 2009

Growth of Frankia strains in leaf litter‐amended soil and the rhizosphere of a nonactinorhizal plant

Babur S. Mirza; Allana Welsh; Dittmar Hahn

The ability of Frankia strains to grow in the rhizosphere of a nonactinorhizal plant, Betula pendula, in surrounding bulk soil and in soil amended with leaf litter was analyzed 6 weeks after inoculation of pure cultures by in situ hybridization. Growth responses were related to taxonomic position as determined by comparative sequence analysis of nifH gene fragments and of an actinomycetes-specific insertion in Domain III of the 23S rRNA gene. Phylogenetic analyses confirmed the basic classification of Frankia strains by host infection groups, and allowed a further differentiation of Frankia clusters within the Alnus host infection group. Except for Casuarina-infective Frankia strains, all other strains of the Alnus and the Elaeagnus host infection groups displayed growth in the rhizosphere of B. pendula, and none of them grew in the surrounding bulk soil that was characterized by a very low organic matter content. Only a small number of strains that all belonged to a distinct phylogenetic cluster within the Alnus host infection group grew in soil amended with ground leaf litter from B. pendula. These results demonstrate that saprotrophic growth of frankiae is a common trait for most members of the genus, and the supporting factors for growth (i.e. carbon utilization capabilities) varied with the host infection group and the phylogenetic affiliation of the strains.

Collaboration


Dive into the Allana Welsh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Hallin

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Julie P. Rieder

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Mark W. Paschke

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge