Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allen A. Thomas is active.

Publication


Featured researches published by Allen A. Thomas.


Bioorganic & Medicinal Chemistry Letters | 2008

Non-charged thiamine analogs as inhibitors of enzyme transketolase.

Allen A. Thomas; J. De Meese; Y. Le Huerou; Steven Armen Boyd; Todd Romoff; Steven S. Gonzales; Indrani W. Gunawardana; Tomas Kaplan; Francis J. Sullivan; Kevin Ronald Condroski; Joseph P. Lyssikatos; Thomas Daniel Aicher; Josh Ballard; Bryan Bernat; Walter E. DeWolf; May Han; Christine Lemieux; Darin Smith; Solly Weiler; S. Kirk Wright; Guy Vigers; Barb Brandhuber

Inhibition of the thiamine-utilizing enzyme transketolase (TK) has been linked with diminished tumor cell proliferation. Most thiamine antagonists have a permanent positive charge on the B-ring, and it has been suggested that this charge is required for diphosphorylation by thiamine pyrophosphokinase (TPPK) and binding to TK. We sought to make neutral thiazolium replacements that would be substrates for TPPK, while not necessarily needing thiamine transporters (ThTr1 and ThTr2) for cell penetration. The synthesis, SAR, and structure-based rationale for highly potent non-thiazolium TK antagonists are presented.


Bioorganic & Medicinal Chemistry Letters | 2014

Discovery of 5,6,7,8-tetrahydropyrido[3,4-d]pyrimidine inhibitors of Erk2.

James F. Blake; John J. Gaudino; Jason De Meese; Peter Mohr; Mark Joseph Chicarelli; Hongqi Tian; Rustam Ferdinand Garrey; Allen A. Thomas; Christopher S. Siedem; Michael Welch; Gabrielle R. Kolakowski; Robert J. Kaus; Michael Burkard; Matthew Martinson; Huifen Chen; Brian Dean; Danette Dudley; Stephen E. Gould; Patricia Pacheco; Sheerin Shahidi-Latham; Weiru Wang; Kristina West; Jianping Yin; John Moffat; Jacob B. Schwarz

The discovery and optimization of a series of tetrahydropyridopyrimidine based extracellular signal-regulated kinase (Erks) inhibitors discovered via HTS and structure based drug design is reported. The compounds demonstrate potent and selective inhibition of Erk2 and knockdown of phospho-RSK levels in HepG2 cells and tumor xenografts.


Drug Metabolism and Disposition | 2013

Mechanistic Pharmacokinetic-Pharmacodynamic Modeling of BACE1 Inhibition in Monkeys: Development of a Predictive Model for Amyloid Precursor Protein Processing

Xingrong Liu; Harvey Wong; Kimberly Scearce-Levie; Ryan J. Watts; Melis Coraggio; Young G. Shin; Kun Peng; Kristin Wildsmith; Jasvinder Atwal; Jason Mango; Stephen Schauer; Kelly Regal; Kevin W. Hunt; Allen A. Thomas; Michael Siu; Joseph P. Lyssikatos; Gauri Deshmukh; Cornelis E. C. A. Hop

This study was conducted to determine the pharmacokinetics (PK) and pharmacodynamics (PD) of two novel inhibitors of β-site amyloid precursor protein (APP)–cleaving enzyme (BACE1), GNE-629 [(4S,4a′S,10a′S)-2-amino-8′-(2-fluoropyridin-3-yl)-1-methyl-3′,4′,4a′,10a′-tetrahydro-1′H-spiro[imidazole-4,10′-pyrano[4,3-b]chromen]-5(1H)-one] and GNE-892 [(R)-2-amino-1,3′,3′-trimethyl-7′-(pyrimidin-5-yl)-3′,4′-dihydro-2′H-spiro[imidazole-4,1′-naphthalen]-5(1H)-one], and to develop a PK-PD model to predict in vivo effects based solely on in vitro activity and PK. GNE-629 and GNE-892 concentrations and PD biomarkers including amyloid β (Aβ) in the plasma and cerebrospinal fluid (CSF), and secreted APPβ (sAPPβ) and secreted APPα (sAPPα) in the CSF were measured after a single oral administration of GNE-629 (100 mg/kg) or GNE-892 (30 or 100 mg/kg) in cynomolgus monkeys. A mechanistic PK-PD model was developed to simultaneously characterize the plasma Aβ and CSF Aβ, sAPPα, and sAPPβ using GNE-629 in vivo data. This model was used to predict the in vivo effects of GNE-892 after adjustments based on differences in in vitro cellular activity and PK. The PK-PD model estimated GNE-629 CSF and free plasma IC50 of 0.0033 μM and 0.065 μM, respectively. These differences in CSF and free plasma IC50 suggest that different mechanisms are involved in Aβ formation in these two compartments. The predicted in vivo effects for GNE-892 using the PK-PD model were consistent with the observed data. In conclusion, a PK-PD model was developed to mechanistically describe the effects of BACE1 inhibition on Aβ, sAPPβ, and sAPPα in the CSF, and Aβ in the plasma. This model can be used to prospectively predict in vivo effects of new BACE1 inhibitors using just their in vitro activity and PK data.


Bioorganic & Medicinal Chemistry Letters | 2016

LAT1 activity of carboxylic acid bioisosteres: Evaluation of hydroxamic acids as substrates

Arik A. Zur; Huan-Chieh Chien; Evan Augustyn; Andrew Flint; Nathan Heeren; Karissa Finke; Christopher Hernandez; Logan Hansen; Sydney Miller; Lawrence Lin; Kathleen M. Giacomini; Claire Colas; Avner Schlessinger; Allen A. Thomas

Large neutral amino acid transporter 1 (LAT1) is a solute carrier protein located primarily in the blood-brain barrier (BBB) that offers the potential to deliver drugs to the brain. It is also up-regulated in cancer cells, as part of a tumors increased metabolic demands. Previously, amino acid prodrugs have been shown to be transported by LAT1. Carboxylic acid bioisosteres may afford prodrugs with an altered physicochemical and pharmacokinetic profile than those derived from natural amino acids, allowing for higher brain or tumor levels of drug and/or lower toxicity. The effect of replacing phenylalanines carboxylic acid with a tetrazole, acylsulfonamide and hydroxamic acid (HA) bioisostere was examined. Compounds were tested for their ability to be LAT1 substrates using both cis-inhibition and trans-stimulation cell assays. As HA-Phe demonstrated weak substrate activity, its structure-activity relationship (SAR) was further explored by synthesis and testing of HA derivatives of other LAT1 amino acid substrates (i.e., Tyr, Leu, Ile, and Met). The potential for a false positive in the trans-stimulation assay caused by parent amino acid was evaluated by conducting compound stability experiments for both HA-Leu and the corresponding methyl ester derivative. We concluded that HAs are transported by LAT1. In addition, our results lend support to a recent account that amino acid esters are LAT1 substrates, and that hydrogen bonding may be as important as charge for interaction with the transporter binding site.


Bioorganic & Medicinal Chemistry Letters | 2016

LAT-1 activity of meta-substituted phenylalanine and tyrosine analogs.

Evan Augustyn; Karissa Finke; Arik A. Zur; Logan Hansen; Nathan Heeren; Huan-Chieh Chien; Lawrence Lin; Kathleen M. Giacomini; Claire Colas; Avner Schlessinger; Allen A. Thomas

The transporter protein Large-neutral Amino Acid Transporter 1 (LAT-1, SLC7A5) is responsible for transporting amino acids such as tyrosine and phenylalanine as well as thyroid hormones, and it has been exploited as a drug delivery mechanism. Recently its role in cancer has become increasingly appreciated, as it has been found to be up-regulated in many different tumor types, and its expression levels have been correlated with prognosis. Substitution at the meta position of aromatic amino acids has been reported to increase affinity for LAT-1; however, the SAR for this position has not previously been explored. Guided by newly refined computational models of the binding site, we hypothesized that groups capable of filling a hydrophobic pocket would increase binding to LAT-1, resulting in improved substrates relative to parent amino acid. Tyrosine and phenylalanine analogs substituted at the meta position with halogens, alkyl and aryl groups were synthesized and tested in cis-inhibition and trans-stimulation cell assays to determine activity. Contrary to our initial hypothesis we found that lipophilicity was correlated with diminished substrate activity and increased inhibition of the transporter. The synthesis and SAR of meta-substituted phenylalanine and tyrosine analogs is described.


Bioorganic & Medicinal Chemistry Letters | 2014

Synthesis, characterization, and PK/PD studies of a series of spirocyclic pyranochromene BACE1 inhibitors.

Matthew Volgraf; Lina Chan; Malcolm P. Huestis; Hans E. Purkey; Michael Burkard; Mary Geck Do; Julie Harris; Kevin W. Hunt; Xingrong Liu; Joseph P. Lyssikatos; Sumeet Rana; Allen A. Thomas; Guy Vigers; Michael Siu

The development of 1,3,4,4a,5,10a-hexahydropyrano[3,4-b]chromene analogs as BACE1 inhibitors is described. Introduction of the spirocyclic pyranochromene scaffold yielded several advantages over previous generation cores, including increased potency, reduced efflux, and reduced CYP2D6 inhibition. Compound 13 (BACE1 IC50=110 nM) demonstrated a reduction in CSF Aβ in wild type rats after a single dose.


Toxicology Mechanisms and Methods | 2015

Mitigation of opioid off-target effects and identification of structural drivers of opioid receptor engagement for BACE-1 small molecule inhibitors

Donna Dambach; Michael Siu; Kevin W. Hunt; Allen A. Thomas; Joseph P. Lyssikatos; Xingrong Liu; Sock Lewin-Koh; Bobby McCray; Kevin A. Ford

Abstract Application of safety lead optimization screening strategies during the early stage of drug discovery led to the identification of a series of CNS-active small molecule inhibitors with opioid off-target effects, as evidenced by potent agonistic activity in functional cell-based assays for mu (MOP), kappa (KOP) and delta (DOP) opioid receptors. The translation of these effects was confirmed in vivo with the following observations: hypoactivity and decreased fecal production in rats (characteristic of MOP agonism); increased urine production in rats (characteristic of KOP agonism); and decreased intestinal transit time in mice, which was partially blocked by the MOP antagonist naloxone, demonstrating that the in vivo effects were specific for MOP. Based on the confirmation of in vitro–in vivo translatability, an in vitro screening strategy was implemented that resulted in the identification of an optimized backup molecule, devoid of in vivo off-target opioid effects. In addition, in silico modeling by docking of the various molecules to the opioid receptors allowed the identification of the structural drivers of these off-target effects, which can be applied to future chemical-design criteria. Thus, implementation of the safety lead optimization strategy described in this article demonstrates the utility and impact of such approaches on risk mitigation and identification of lead small molecules with improved safety profiles.


Journal of Medicinal Chemistry | 2018

Reevaluating the Substrate Specificity of the L-Type Amino Acid Transporter (LAT1)

Huan-Chieh Chien; Claire Colas; Karissa Finke; Seth Springer; Laura Stoner; Arik A. Zur; Brooklynn Venteicher; Jerome Campbell; Colton Hall; Andrew Flint; Evan Augustyn; Christopher Hernandez; Nathan Heeren; Logan Hansen; Abby Anthony; Justine Bauer; Dimitrios Fotiadis; Avner Schlessinger; Kathleen M. Giacomini; Allen A. Thomas

The L-type amino acid transporter 1 (LAT1, SLC7A5) transports essential amino acids across the blood-brain barrier (BBB) and into cancer cells. To utilize LAT1 for drug delivery, potent amino acid promoieties are desired, as prodrugs must compete with millimolar concentrations of endogenous amino acids. To better understand ligand-transporter interactions that could improve potency, we developed structural LAT1 models to guide the design of substituted analogues of phenylalanine and histidine. Furthermore, we evaluated the structure-activity relationship (SAR) for both enantiomers of naturally occurring LAT1 substrates. Analogues were tested in cis-inhibition and trans-stimulation cell assays to determine potency and uptake rate. Surprisingly, LAT1 can transport amino acid-like substrates with wide-ranging polarities including those containing ionizable substituents. Additionally, the rate of LAT1 transport was generally nonstereoselective even though enantiomers likely exhibit different binding modes. Our findings have broad implications to the development of new treatments for brain disorders and cancer.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis, in vitro and in vivo activity of thiamine antagonist transketolase inhibitors

Allen A. Thomas; Y. Le Huerou; J. De Meese; Indrani W. Gunawardana; Tomas Kaplan; Todd Romoff; Stephen S. Gonzales; Kevin Ronald Condroski; Steven Armen Boyd; Josh Ballard; Bryan Bernat; Walter E. DeWolf; May Han; Patrice Lee; Christine Lemieux; Robin Pedersen; Jed Pheneger; Greg Poch; Darin Smith; Francis J. Sullivan; Solly Weiler; S. Kirk Wright; Jie Lin; Barb Brandhuber; Guy Vigers


Archive | 2011

Compounds for treating neurodegenerative diseases

Kevin W. Hunt; Tony P. Tang; Allen A. Thomas

Collaboration


Dive into the Allen A. Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge