Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph P. Lyssikatos is active.

Publication


Featured researches published by Joseph P. Lyssikatos.


Journal of Medicinal Chemistry | 2012

Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors.

Anthony A. Estrada; Xingrong Liu; Charles Baker-Glenn; Alan Beresford; Daniel J. Burdick; Mark Stuart Chambers; Bryan K. Chan; Huifen Chen; Xiao Ding; Antonio G. DiPasquale; Sara L. Dominguez; Jennafer Dotson; Jason Drummond; Michael Flagella; Sean P. Flynn; Reina N. Fuji; Andrew Gill; Janet Gunzner-Toste; Seth F. Harris; Timothy P. Heffron; Tracy Kleinheinz; Donna W. Lee; Claire E. Le Pichon; Joseph P. Lyssikatos; Andrew D. Medhurst; John Moffat; Susmith Mukund; Kevin Nash; Kimberly Scearce-Levie; Zejuan Sheng

There is a high demand for potent, selective, and brain-penetrant small molecule inhibitors of leucine-rich repeat kinase 2 (LRRK2) to test whether inhibition of LRRK2 kinase activity is a potentially viable treatment option for Parkinsons disease patients. Herein we disclose the use of property and structure-based drug design for the optimization of highly ligand efficient aminopyrimidine lead compounds. High throughput in vivo rodent cassette pharmacokinetic studies enabled rapid validation of in vitro-in vivo correlations. Guided by this data, optimal design parameters were established. Effective incorporation of these guidelines into our molecular design process resulted in the discovery of small molecule inhibitors such as GNE-7915 (18) and 19, which possess an ideal balance of LRRK2 cellular potency, broad kinase selectivity, metabolic stability, and brain penetration across multiple species. Advancement of GNE-7915 into rodent and higher species toxicity studies enabled risk assessment for early development.


Science Translational Medicine | 2015

Effect of selective LRRK2 kinase inhibition on nonhuman primate lung

Reina N. Fuji; Michael Flagella; Miriam Baca; Marco A. S. Baptista; Jens Brodbeck; Bryan K. Chan; Brian K. Fiske; Lee Honigberg; Adrian M. Jubb; Paula Katavolos; Donna W. Lee; Sock-Cheng Lewin-Koh; Tori Lin; Xingrong Liu; Shannon Liu; Joseph P. Lyssikatos; Jennifer O'Mahony; Mike Reichelt; Merone Roose-Girma; Zejuan Sheng; Todd Sherer; Ashley Smith; Margaret Solon; Zachary Kevin Sweeney; Jacqueline M. Tarrant; Alison Urkowitz; Søren Warming; Murat Yaylaoglu; Shuo Zhang; Haitao Zhu

LRRK2 kinase inhibitors, under development for Parkinson’s disease, have an effect on type II pneumocytes in nonhuman primate lung, suggesting that pulmonary toxicity may be a critical safety liability. A lung phenotype for LRRK2 inhibitors Human genetic evidence implicates leucine-rich repeat kinase 2 (LRRK2) as a high-priority drug target for Parkinson’s disease. However, the benefit and risk of inhibiting the kinase activity of LRRK2 is unknown and is currently untested in humans. Using two selective LRRK2 kinase inhibitors, Fuji et al. report a safety liability in nonhuman primates characterized by morphological changes in lung. These results are consistent with observations in mice lacking LRRK2. These safety observations offer a cautionary note for pharmacological modulation of LRRK2 in humans. Inhibition of the kinase activity of leucine-rich repeat kinase 2 (LRRK2) is under investigation as a possible treatment for Parkinson’s disease. However, there is no clinical validation as yet, and the safety implications of targeting LRRK2 kinase activity are not well understood. We evaluated the potential safety risks by comparing human and mouse LRRK2 mRNA tissue expression, by analyzing a Lrrk2 knockout mouse model, and by testing selective brain-penetrating LRRK2 kinase inhibitors in multiple species. LRRK2 mRNA tissue expression was comparable between species. Phenotypic analysis of Lrrk2 knockout mice revealed morphologic changes in lungs and kidneys, similar to those reported previously. However, in preclinical toxicity assessments in rodents, no pulmonary or renal changes were induced by two distinct LRRK2 kinase inhibitors. Both of these kinase inhibitors induced abnormal cytoplasmic accumulation of secretory lysosome-related organelles known as lamellar bodies in type II pneumocytes of the lung in nonhuman primates, but no lysosomal abnormality was observed in the kidney. The pulmonary change resembled the phenotype of Lrrk2 knockout mice, suggesting that this was LRRK2-mediated rather than a nonspecific or off-target effect. A biomarker of lysosomal dysregulation, di-docosahexaenoyl (22:6) bis(monoacylglycerol) phosphate (di-22:6-BMP), was also decreased in the urine of Lrrk2 knockout mice and nonhuman primates treated with LRRK2 kinase inhibitors. Our results suggest a role for LRRK2 in regulating lysosome-related lamellar bodies and that pulmonary toxicity may be a critical safety liability for LRRK2 kinase inhibitors in patients.


Bioorganic & Medicinal Chemistry Letters | 2008

Potent and selective pyrazole-based inhibitors of B-Raf kinase

Joshua D. Hansen; Jonas Grina; Brad Newhouse; Mike Welch; George T. Topalov; Nicole Littman; Michele Callejo; Susan L. Gloor; Matthew Martinson; Ellen R. Laird; Barbara J. Brandhuber; Guy Vigers; Tony Morales; Rich Woessner; Nikole Randolph; Joseph P. Lyssikatos; Alan G. Olivero

Herein we describe a novel pyrazole-based class of ATP competitive B-Raf inhibitors. These inhibitors exhibit both excellent cellular potency and striking B-Raf selectivity. A subset of these inhibitors has demonstrated the ability to inhibit downstream ERK phosphorylation in LOX tumors from mouse xenograft studies.


Journal of Medicinal Chemistry | 2012

Discovery of Potent and Selective Pyrazolopyrimidine Janus Kinase 2 Inhibitors

Emily Hanan; Anne van Abbema; Kathy Barrett; Wade S. Blair; Jeff Blaney; Christine Chang; Charles Eigenbrot; Sean P. Flynn; Paul Gibbons; Christopher Hurley; Jane R. Kenny; Janusz Jozef Kulagowski; Leslie Lee; Steven Magnuson; Claire Morris; Jeremy D. Murray; Richard Pastor; Tom Rawson; Michael Siu; Mark Ultsch; Aihe Zhou; Deepak Sampath; Joseph P. Lyssikatos

The discovery of somatic Jak2 mutations in patients with chronic myeloproliferative neoplasms has led to significant interest in discovering selective Jak2 inhibitors for use in treating these disorders. A high-throughput screening effort identified the pyrazolo[1,5-a]pyrimidine scaffold as a potent inhibitor of Jak2. Optimization of lead compounds 7a-b and 8 in this chemical series for activity against Jak2, selectivity against other Jak family kinases, and good in vivo pharmacokinetic properties led to the discovery of 7j. In a SET2 xenograft model that is dependent on Jak2 for growth, 7j demonstrated a time-dependent knock-down of pSTAT5, a downstream target of Jak2.


Journal of Medicinal Chemistry | 2013

Lead Optimization of a 4-Aminopyridine Benzamide Scaffold To Identify Potent, Selective, and Orally Bioavailable TYK2 Inhibitors.

Jun Liang; A van Abbema; Mercedesz Balazs; Kathy Barrett; L Berezhkovsky; Wade S. Blair; Christine Chang; Donnie Delarosa; Jason DeVoss; J Driscoll; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Jason S. Halladay; Amber E. Johnson; Pawan Bir Kohli; Yingjie Lai; Y Liu; Joseph P. Lyssikatos; Priscilla Mantik; Kapil Menghrajani; Jeremy Murray; Ivan Peng; Amy Sambrone; Steven Shia; Young G. Shin; Jan Smith; Sue Sohn; Tsui; Mark Ultsch

Herein we report our lead optimization effort to identify potent, selective, and orally bioavailable TYK2 inhibitors, starting with lead molecule 3. We used structure-based design to discover 2,6-dichloro-4-cyanophenyl and (1R,2R)-2-fluorocyclopropylamide modifications, each of which exhibited improved TYK2 potency and JAK1 and JAK2 selectivity relative to 3. Further optimization eventually led to compound 37 that showed good TYK2 enzyme and interleukin-12 (IL-12) cell potency, as well as acceptable cellular JAK1 and JAK2 selectivity and excellent oral exposure in mice. When tested in a mouse IL-12 PK/PD model, compound 37 showed statistically significant knockdown of cytokine interferon-γ (IFNγ), suggesting that selective inhibition of TYK2 kinase activity might be sufficient to block the IL-12 pathway in vivo.


Bioorganic & Medicinal Chemistry Letters | 2011

Non-oxime pyrazole based inhibitors of B-Raf kinase.

Bradley J. Newhouse; Joshua D. Hansen; Jonas Grina; Mike Welch; George T. Topalov; Nicole Littman; Michele Callejo; Matthew Martinson; Sarah Galbraith; Ellen R. Laird; Barbara J. Brandhuber; Guy Vigers; Tony Morales; Rich Woessner; Nikole Randolph; Joseph P. Lyssikatos; Alan G. Olivero

The synthesis and biological evaluation of non-oxime pyrazole based B-Raf inhibitors is reported. Several oxime replacements have been prepared and have shown excellent enzyme activity. Further optimization of fused pyrazole 2a led to compound 38, a selective and potent B-Raf inhibitor.


Bioorganic & Medicinal Chemistry Letters | 2011

Non-oxime inhibitors of B-Raf V600E kinase

Li Ren; Steve Wenglowsky; Greg Miknis; Bryson Rast; Alex J. Buckmelter; Robert J. Ely; Stephen T. Schlachter; Ellen R. Laird; Nikole Randolph; Michele Callejo; Matthew Martinson; Sarah Galbraith; Barbara J. Brandhuber; Guy Vigers; Tony Morales; Walter C. Voegtli; Joseph P. Lyssikatos

The development of inhibitors of B-Raf(V600E) serine-threonine kinase is described. Various head-groups were examined to optimize inhibitor activity and ADME properties. Several of the head-groups explored, including naphthol, phenol and hydroxyamidine, possessed good activity but had poor pharmacokinetic exposure in mice. Exposure was improved by incorporating more metabolically stable groups such as indazole and tricyclic pyrazole, while indazole could also be optimized for good cellular activity.


Bioorganic & Medicinal Chemistry Letters | 2013

2-Amino-[1,2,4]triazolo[1,5-a]pyridines as JAK2 inhibitors.

Michael Siu; Richard Pastor; Wendy Liu; Kathy Barrett; Megan Berry; Wade S. Blair; Christine Chang; Jacob Chen; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Haiying He; Christopher Hurley; Jane R. Kenny; S. Cyrus Khojasteh; Hoa Le; Leslie Lee; Joseph P. Lyssikatos; Steve Magnuson; Rebecca Pulk; Vickie Tsui; Mark Ultsch; Yisong Xiao; Bing-Yan Zhu; Deepak Sampath

The advancement of a series of ligand efficient 2-amino-[1,2,4]triazolo[1,5-a]pyridines, initially identified from high-throughput screening, to a JAK2 inhibitor with pharmacodynamic activity in a mouse xenograft model is disclosed.


Journal of Medicinal Chemistry | 2013

Pyrimidoaminotropanes as Potent, Selective, and Efficacious Small Molecule Kinase Inhibitors of the Mammalian Target of Rapamycin (mTOR)

Anthony A. Estrada; Daniel Shore; Elizabeth Blackwood; Yung-Hsiang Chen; Gauri Deshmukh; Xiao Ding; Antonio G. DiPasquale; Jennifer Epler; Lori Friedman; Michael F. T. Koehler; Lichuan Liu; Shiva Malek; Jim Nonomiya; Daniel F. Ortwine; Zhonghua Pei; Steve Sideris; Frederic St-Jean; Lan Trinh; Tom Truong; Joseph P. Lyssikatos

We have recently reported a series of tetrahydroquinazoline (THQ) mTOR inhibitors that produced a clinical candidate 1 (GDC-0349). Through insightful design, we hoped to discover and synthesize a new series of small molecule inhibitors that could attenuate CYP3A4 time-dependent inhibition commonly observed with the THQ scaffold, maintain or improve aqueous solubility and oral absorption, reduce free drug clearance, and selectively increase mTOR potency. Through key in vitro and in vivo studies, we demonstrate that a pyrimidoaminotropane based core was able to address each of these goals. This effort culminated in the discovery of 20 (GNE-555), a highly potent, selective, metabolically stable, and efficacious mTOR inhibitor.


Journal of Medicinal Chemistry | 2012

Potent, Selective, and Orally Bioavailable Inhibitors of the Mammalian Target of Rapamycin Kinase Domain Exhibiting Single Agent Antiproliferative Activity

Michael F. T. Koehler; Philippe Bergeron; Elizabeth Blackwood; Krista K. Bowman; Yung-Hsiang Chen; Gauri Deshmukh; Xiao Ding; Jennifer Epler; Kevin Lau; Leslie Lee; Lichuan Liu; Cuong Ly; Shiva Malek; Jim Nonomiya; Jason Oeh; Daniel F. Ortwine; Deepak Sampath; Steve Sideris; Lan Trinh; Tom Truong; Jiansheng Wu; Zhonghua Pei; Joseph P. Lyssikatos

Selective inhibitors of mammalian target of rapamycin (mTOR) kinase based upon saturated heterocycles fused to a pyrimidine core were designed and synthesized. Each series produced compounds with K(i) < 10 nM for the mTOR kinase and >500-fold selectivity over closely related PI3 kinases. This potency translated into strong pathway inhibition, as measured by phosphorylation of mTOR substrate proteins and antiproliferative activity in cell lines with a constitutively active PI3K pathway. Two compounds exhibiting suitable mouse PK were profiled in in vivo tumor models and were shown to suppress mTORC1 and mTORC2 signaling for over 12 h when dosed orally. Both compounds were additionally shown to suppress tumor growth in vivo in a PC3 prostate cancer model over a 14 day study.

Collaboration


Dive into the Joseph P. Lyssikatos's collaboration.

Researchain Logo
Decentralizing Knowledge