Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allen D. Gorby is active.

Publication


Featured researches published by Allen D. Gorby.


Measurement Science and Technology | 2004

Validation of an analytical solution for depth of correlation in microscopic particle image velocimetry

Christopher Jay Bourdon; Michael G. Olsen; Allen D. Gorby

Because the entire flowfield is generally illuminated in microscopic particle image velocimetry (microPIV), determining the depth over which particles will contribute to the measured velocity is more difficult than in traditional, light-sheet PIV. This paper experimentally and computationally measures the influence that volume illumination, optical parameters, and particle size have on the depth of correlation for typical microPIV systems. First, it is demonstrated mathematically that the relative contribution to the measured velocity at a given distance from the object plane is proportional to the curvature of the local cross-correlation function at that distance. The depth of correlation is then determined in both the physical experiments and in computational simulations by directly measuring the relative contribution to the correlation function of particles located at a known separation from the object plane. These results are then compared with a previously derived analytical model that predicts the depth of correlation from the basic properties of the imaging system and seed particles used for the microPIV measurements. Excellent agreement was obtained between the analytical model and both computational and physical experiments, verifying the accuracy of the previously derived analytical model.


Journal of Fluids Engineering-transactions of The Asme | 2006

The Depth of Correlation in Micro-PIV for High Numerical Aperture and Immersion Objectives

Christopher Jay Bourdon; Michael G. Olsen; Allen D. Gorby

The analytical model for the depth of correlation (measurement depth) of a microscopic particle image velocimetry (micro-PIV) experiment derived by Olsen and Adrian has been modified to be applicable to experiments using high numerical aperture optics. A series of measurements are presented that experimentally quantify the depth of correlation of micro-PIV velocity measurements which employ high numerical aperture and magnification optics. These measurements demonstrate that the modified analytical model is quite accurate in estimating the depth of correlation in micro-PIV measurements using this class of optics


Journal of Heat Transfer-transactions of The Asme | 2010

Raman Thermometry Measurements and Thermal Simulations for MEMS Bridges at Pressures From 0.05 Torr to 625 Torr

Leslie M. Phinney; Justin R. Serrano; Edward S. Piekos; John R. Torczynski; Michael A. Gallis; Allen D. Gorby

This paper reports on experimental and computational investigations into the thermal performance of microelectromechanical systems (MEMS) as a function of the pressure of the surrounding gas. High spatial resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 μm wide, 2.25 μm thick, and either 200 μm or 400 μm long in nitrogen atmospheres with pressures ranging from 0.05 Torr to 625 Torr (6.67 Pa―83.3 kPa). Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared with the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The results indicate that gas-phase heat transfer is significant for devices of this size at ambient pressures but becomes minimal as the pressure is reduced below 5 Torr. The model and experimental results are in qualitative agreement, and better quantitative agreement requires increased accuracy in the geometrical and material property values.


ASME 2003 International Mechanical Engineering Congress and Exposition | 2003

Validation of Analytical Solution for Depth-of-Correlation in Microscopic Particle Image Velocimetry

Christopher Jay Bourdon; Michael G. Olsen; Allen D. Gorby

Because the entire flowfield is generally illuminated in microscopic particle image velocimetry (microPIV), determining the depth over which particles will contribute to the measured velocity is more difficult than in traditional, light-sheet PIV. This paper experimentally and computationally measures the influence that volume illumination, optical parameters, and particle size have on the depth of correlation for typical microPIV system. First, it is demonstrated mathematically that the relative contribution to the measured velocity at a given distance from the object plane is proportional to the curvature of the local cross-correlation function at the distance. The depth of correlation is then determined in both the physical experiments and in computational simulations by directly measuring the relative contribution to the correlation function of particles located at a known separation from the object plane. These results are then compared with a previously derived analytical model that predicts the depth of correlation from the basic properties of the imaging sytem and seed particles used for the microPIV measurements. Excellent agreement was obtained between the analytical model and both computational and physical experiments, verifying the accuracy of the previously derived analytical model.Copyright


Archive | 2008

Experiments for foam model development and validation.

Christopher Jay Bourdon; Raymond O. Cote; Harry K. Moffat; Anne Grillet; James Mahoney; Technologies, Kansas City Plant, Kansas City, Mo; Edward Mark Russick; Douglas Brian Adolf; Rekha Ranjana Rao; Kyle R. Thompson; Andrew Michael Kraynik; Jaime N. Castaneda; Christopher M. Brotherton; Lisa Ann Mondy; Allen D. Gorby

A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.


Review of Scientific Instruments | 2007

Three dimensional drop tracking flow chamber for coalescence studies

Anne M. Grillet; Carlton F. Brooks; Christopher Jay Bourdon; Allen D. Gorby

We have developed a novel flow chamber which imposes a controlled axisymmetric stagnation flow to enable the study of external flow effects on coalescence dynamics. This system allows for the first time the precise positioning of a drop in a three dimensional flow and additionally enforces a highly symmetric flow around the drop. We focus on the study of a single drop approaching a stationary flat plane as this is analogous to two drops approaching each other. A single drop is created and then guided along the unsteady center line of a stagnation flow. The real time computer control algorithm analyzes video images of the drop in two orthogonal planes and manipulates flow restricting valves along the four outlets of the flow. We demonstrate using particle image velocimetry that the computer control not only controls the drop position but also ensures a symmetric flow inside the flow chamber. This chamber will enable a detailed investigation of the drainage of the thin film between the drop and the lower surface in order to probe the effect of external flow on coalescence.


Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer | 2009

Raman Thermometry Measurements and Thermal Simulations for MEMS Bridges at Pressures From 0.05 to 625 Torr

Leslie M. Phinney; Justin R. Serrano; Edward S. Piekos; John R. Torczynski; Michael A. Gallis; Allen D. Gorby

This paper reports on experimental and computational investigations into the thermal performance of microelectro-mechanical systems (MEMS) as a function of the pressure of the surrounding gas. High spatial resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 μm wide, 2.25 μm thick, and either 200 or 400 μm long in nitrogen atmospheres with pressures ranging from 0.05 to 625 Torr. Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared to the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The results indicate that gas-phase heat transfer is significant for devices of this size at ambient pressures but becomes minimal as the pressure is reduced below 5 Torr. The model and experimental results are in qualitative agreement, and better quantitative agreement requires increased accuracy in the geometrical and material property values.Copyright


Archive | 2009

Nano-Engineering by Optically Directed Self-Assembly

Eric M. Furst; Elissa Dunn; Jin-Gyu Park; C. Jeffrey Brinker; Sunil K. Sainis; Jason W. Merrill; Eric R. Dufresne; Matthew Douglas Reichert; Christopher M. Brotherton; Katherine Huderle Andersen Bogart; Ryan A. Molecke; Timothy P. Koehler; Nelson S Bell; Anne M. Grillet; Allen D. Gorby; John Singh; Pushkar P. Lele; Manish Mittal

Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.


Archive | 2009

Thermomechanical Measurements on Thermal Microactuators

Michael S. Baker; David S. Epp; Justin Raymond Serrano; Allen D. Gorby; Leslie M. Phinney

Due to the coupling of thermal and mechanical behaviors at small scales, a Campaign 6 project was created to investigate thermomechanical phenomena in microsystems. This report documents experimental measurements conducted under the auspices of this project. Since thermal and mechanical measurements for thermal microactuators were not available for a single microactuator design, a comprehensive suite of thermal and mechanical experimental data was taken and compiled for model validation purposes. Three thermal microactuator designs were selected and fabricated using the SUMMiT V{sup TM} process at Sandia National Laboratories. Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal microactuators are reported, including displacement, overall actuator electrical resistance, force, temperature profiles along microactuator legs in standard laboratory air pressures and reduced pressures down to 50 mTorr, resonant frequency, out-of-plane displacement, and dynamic displacement response to applied voltages.


Archive | 2006

Hydrodynamic Effects on Coalescence

Thomas G. Dimiduk; Christopher Jay Bourdon; Anne Grillet; Thomas A. Baer; Maarten P. de Boer; Michael Loewenberg; Allen D. Gorby; Brooks, Carlton, F.

The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.

Collaboration


Dive into the Allen D. Gorby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie M. Phinney

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward S. Piekos

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Anne Grillet

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anne M. Grillet

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Carlton F. Brooks

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Torczynski

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Justin R. Serrano

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge