Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Allison R. Pettit is active.

Publication


Featured researches published by Allison R. Pettit.


American Journal of Pathology | 2001

TRANCE/RANKL Knockout Mice Are Protected from Bone Erosion in a Serum Transfer Model of Arthritis

Allison R. Pettit; Hong Ji; Dietrich von Stechow; Ralph Müller; Steven R. Goldring; Yongwon Choi; Christophe Benoist; Ellen M. Gravallese

There is considerable evidence that osteoclasts are involved in the pathogenesis of focal bone erosion in rheumatoid arthritis. Tumor necrosis factor-related activation-induced cytokine, also known as receptor activator of nuclear factor-kappaB ligand (TRANCE/RANKL) is an essential factor for osteoclast differentiation. In addition to its role in osteoclast differentiation and activation, TRANCE/RANKL also functions to augment T-cell dendritic cell cooperative interactions. To further evaluate the role of osteoclasts in focal bone erosion in arthritis, we generated inflammatory arthritis in the TRANCE/RANKL knockout mouse using a serum transfer model that bypasses the requirement for T-cell activation. These animals exhibit an osteopetrotic phenotype characterized by the absence of osteoclasts. Inflammation, measured by clinical signs of arthritis and histopathological scoring, was comparable in wild-type and TRANCE/RANKL knockout mice. Microcomputed tomography and histopathological analysis demonstrated that the degree of bone erosion in TRANCE/RANKL knockout mice was dramatically reduced compared to that seen in control littermate mice. In contrast, cartilage erosion was present in both control littermate and TRANCE/RANKL knockout mice. These results confirm the central role of osteoclasts in the pathogenesis of bone erosion in arthritis and demonstrate distinct mechanisms of cartilage destruction and bone erosion in this animal model of arthritis.


Blood | 2010

Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs.

Ingrid G. Winkler; Natalie A. Sims; Allison R. Pettit; Valerie Barbier; Bianca Nowlan; Falak Helwani; Ingrid J. Poulton; Nico van Rooijen; Kylie A. Alexander; Liza J. Raggatt; Jean-Pierre Levesque

In the bone marrow, hematopoietic stem cells (HSCs) reside in specific niches near osteoblast-lineage cells at the endosteum. To investigate the regulation of these endosteal niches, we studied the mobilization of HSCs into the bloodstream in response to granulocyte colony-stimulating factor (G-CSF). We report that G-CSF mobilization rapidly depletes endosteal osteoblasts, leading to suppressed endosteal bone formation and decreased expression of factors required for HSC retention and self-renewal. Importantly, G-CSF administration also depleted a population of trophic endosteal macrophages (osteomacs) that support osteoblast function. Osteomac loss, osteoblast suppression, and HSC mobilization occurred concomitantly, suggesting that osteomac loss could disrupt endosteal niches. Indeed, in vivo depletion of macrophages, in either macrophage Fas-induced apoptosis (Mafia) transgenic mice or by administration of clodronate-loaded liposomes to wild-type mice, recapitulated the: (1) loss of endosteal osteoblasts and (2) marked reduction of HSC-trophic cytokines at the endosteum, with (3) HSC mobilization into the blood, as observed during G-CSF administration. Together, these results establish that bone marrow macrophages are pivotal to maintain the endosteal HSC niche and that the loss of such macrophages leads to the egress of HSCs into the blood.


Journal of Immunology | 2008

Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo

Ming K. Chang; Liza-Jane Raggatt; Kylie A. Alexander; J.S. Kuliwaba; Nicola L. Fazzalari; Kate Schroder; Erin Maylin; Vera M. Ripoll; David A. Hume; Allison R. Pettit

Resident macrophages are an integral component of many tissues and are important in homeostasis and repair. This study examines the contribution of resident tissue macrophages to bone physiology. Using immunohistochemistry, we showed that a discrete population of resident macrophages, OsteoMacs, was intercalated throughout murine and human osteal tissues. OsteoMacs were distributed among other bone lining cells within both endosteum and periosteum. Furthermore, OsteoMacs were coisolated with osteoblasts in murine bone explant and calvarial preparations. OsteoMacs made up 15.9% of calvarial preparations and persisted throughout standard osteoblast differentiation cultures. Contrary to previous studies, we showed that it was OsteoMacs and not osteoblasts within these preparations that responded to pathophysiological concentrations of LPS by secreting TNF. Removal of OsteoMacs from calvarial cultures significantly decreased osteocalcin mRNA induction and osteoblast mineralization in vitro. In a Transwell coculture system of enriched osteoblasts and macrophages, we demonstrated that macrophages were required for efficient osteoblast mineralization in response to the physiological remodeling stimulus, elevated extracellular calcium. Notably, OsteoMacs were closely associated with areas of bone modeling in situ, forming a distinctive canopy structure covering >75% of mature osteoblasts on diaphyseal endosteal surfaces in young growing mice. Depletion of OsteoMacs in vivo using the macrophage-Fas-induced apoptosis (MAFIA) mouse caused complete loss of osteoblast bone-forming surface at this modeling site. Overall, we have demonstrated that OsteoMacs are an integral component of bone tissues and play a novel role in bone homeostasis through regulating osteoblast function. These observations implicate OsteoMacs, in addition to osteoclasts and osteoblasts, as principal participants in bone dynamics.


Journal of Experimental Medicine | 2002

Critical Roles for Interleukin 1 and Tumor Necrosis Factor α in Antibody-induced Arthritis

Hong Ji; Allison R. Pettit; Koichiro Ohmura; Adriana Ortiz-Lopez; Véronique Duchatelle; Claude Degott; Ellen M. Gravallese; Diane Mathis; Christophe Benoist

In spontaneous inflammatory arthritis of K/BxN T cell receptor transgenic mice, the effector phase of the disease is provoked by binding of immunoglobulins (Igs) to joint surfaces. Inflammatory cytokines are known to be involved in human inflammatory arthritis, in particular rheumatoid arthritis, although, overall, the pathogenetic mechanisms of the human affliction remain unclear. To explore the analogy between the K/BxN model and human patients, we assessed the role and relative importance of inflammatory cytokines in K/BxN joint inflammation by transferring arthritogenic serum into a panel of genetically deficient recipients. Interleukin (IL)-1 proved absolutely necessary. Tumor necrosis factor (TNF)–α was also required, although seemingly less critically than IL-1, because a proportion of TNF-α–deficient mice developed robust disease. There was no evidence for an important role for IL-6. Bone destruction and reconstruction were also examined. We found that all mice with strong inflammation exhibited the bone erosion and reconstruction phenomena typical of K/BxN arthritis, with no evidence of any particular requirement for TNFα for bone destruction. The variability in the requirement for TNF-α, reminiscent of that observed in treated rheumatoid arthritis patients, did not appear genetically programmed but related instead to subtle environmental changes.


Blood | 2010

An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation

Kelli P. A. MacDonald; James S. Palmer; Stephen L. Cronau; Elke Seppanen; Stuart D. Olver; Neil C. Raffelt; Rachel D. Kuns; Allison R. Pettit; Andrew D. Clouston; Brandon J. Wainwright; Dan Branstetter; Jeffrey Smith; Raymond J. Paxton; Douglas Pat Cerretti; Lynn Bonham; Geoffrey R. Hill; David A. Hume

The development of the mononuclear phagocyte system requires macrophage colony-stimulating factor (CSF-1) signaling through the CSF-1 receptor (CSF1R, CD115). We examined the effect of an antibody against CSF1R on macrophage homeostasis and function using the MacGreen transgenic mouse (csf1r-enhanced green fluorescent protein) as a reporter. The administration of a novel CSF1R blocking antibody selectively reduced the CD115(+)Gr-1(neg) monocyte precursor of resident tissue macrophages. CD115(+)Gr-1(+) inflammatory monocytes were correspondingly increased, supporting the view that monocytes are a developmental series. Within tissue, the antibody almost completely depleted resident macrophage populations in the peritoneum, gastrointestinal tract, liver, kidney, and skin, but not in the lung or female reproductive organs. CSF1R blockade reduced the numbers of tumor-associated macrophages in syngeneic tumor models, suggesting that these cells are resident type macrophages. Conversely, it had no effect on inflammatory monocyte recruitment in models, including lipopolysaccharide-induced lung inflammation, wound healing, peritonitis, and severe acute graft-versus-host disease. Depletion of resident tissue macrophages from bone marrow transplantation recipients actually resulted in accelerated pathology and exaggerated donor T-cell activation. The data indicate that CSF1R signaling is required only for the maturation and replacement of resident-type monocytes and tissue macrophages, and is not required for monocyte production or inflammatory function.


Journal of Bone and Mineral Research | 2011

Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model

Kylie A. Alexander; Ming K Chang; Erin Maylin; Thomas Kohler; Ralph Müller; Andy C.K. Wu; Nico van Rooijen; Matthew J. Sweet; David A. Hume; Liza J. Raggatt; Allison R. Pettit

Bone‐lining tissues contain a population of resident macrophages termed osteomacs that interact with osteoblasts in vivo and control mineralization in vitro. The role of osteomacs in bone repair was investigated using a mouse tibial bone injury model that heals primarily through intramembranous ossification and progresses through all major phases of stabilized fracture repair. Immunohistochemical studies revealed that at least two macrophage populations, F4/80+Mac‐2−/lowTRACP− osteomacs and F4/80+Mac‐2hiTRACP− inflammatory macrophages, were present within the bone injury site and persisted throughout the healing time course. In vivo depletion of osteomacs/macrophages (either using the Mafia transgenic mouse model or clodronate liposome delivery) or osteoclasts (recombinant osteoprotegerin treatment) established that osteomacs were required for deposition of collagen type 1+ (CT1+) matrix and bone mineralization in the tibial injury model, as assessed by quantitative immunohistology and micro–computed tomography. Conversely, administration of the macrophage growth factor colony‐stimulating factor 1 (CSF‐1) increased the number of osteomacs/macrophages at the injury site significantly with a concurrent increase in new CT1+ matrix deposition and enhanced mineralization. This study establishes osteomacs as participants in intramembranous bone healing and as targets for primary anabolic bone therapies.


Bone | 2008

Osteal macrophages: a new twist on coupling during bone dynamics.

Allison R. Pettit; Ming K. Chang; David A. Hume; Liza-Jane Raggatt

Osteoimmunological interactions are central to maintaining bone homeostasis and are key mechanisms in bone pathology. Macrophages are highly adaptable cells with pleiotropic actions. They have important roles in development, homeostasis and both innate and adaptive immunity. Macrophages can have broad ranging effects on bone, particularly in pathologic situations, but they are most commonly considered for their in vitro potential as an osteoclast precursor. We have recently shown that, like most tissues, the endosteum and periosteum contain a population of resident tissue macrophages (OsteoMacs) that impact on the bone formation process and are likely to play important roles in the bone niche. This review discusses the wider impact of macrophages in bone homeostasis and disease and proposes novel roles for OsteoMacs in bone modelling and remodelling.


Arthritis & Rheumatism | 2012

β-Glucan triggers spondylarthritis and Crohn's disease-like ileitis in SKG mice

Merja Ruutu; Gethin P. Thomas; Roland Steck; Mariapia A. Degli-Esposti; Martin S. Zinkernagel; Kylie A. Alexander; Jared Velasco; Geoffrey Strutton; Ai Tran; Helen Benham; Linda Rehaume; Robert J. Wilson; Kristine Kay Kikly; Julian Davies; Allison R. Pettit; Matthew A. Brown; Michael A. McGuckin; Ranjeny Thomas

OBJECTIVE The spondylarthritides (SpA), including ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis, and arthritis associated with inflammatory bowel disease, cause chronic inflammation of the large peripheral and axial joints, eyes, skin, ileum, and colon. Genetic studies reveal common candidate genes for AS, PsA, and Crohns disease, including IL23R, IL12B, STAT3, and CARD9, all of which are associated with interleukin-23 (IL-23) signaling downstream of the dectin 1 β-glucan receptor. In autoimmune-prone SKG mice with mutated ZAP-70, which attenuates T cell receptor signaling and increases the autoreactivity of T cells in the peripheral repertoire, IL-17-dependent inflammatory arthritis developed after dectin 1-mediated fungal infection. This study was undertaken to determine whether SKG mice injected with 1,3-β-glucan (curdlan) develop evidence of SpA, and the relationship of innate and adaptive autoimmunity to this process. METHODS SKG mice and control BALB/c mice were injected once with curdlan or mannan. Arthritis was scored weekly, and organs were assessed for pathologic features. Anti-IL-23 monoclonal antibodies were injected into curdlan-treated SKG mice. CD4+ T cells were transferred from curdlan-treated mice to SCID mice, and sera were analyzed for autoantibodies. RESULTS After systemic injection of curdlan, SKG mice developed enthesitis, wrist, ankle, and sacroiliac joint arthritis, dactylitis, plantar fasciitis, vertebral inflammation, ileitis resembling Crohns disease, and unilateral uveitis. Mannan triggered spondylitis and arthritis. Arthritis and spondylitis were T cell- and IL-23-dependent and were transferable to SCID recipients with CD4+ T cells. SpA was associated with collagen- and proteoglycan-specific autoantibodies. CONCLUSION Our findings indicate that the SKG ZAP-70W163C mutation predisposes BALB/c mice to SpA, resulting from innate and adaptive autoimmunity, after systemic β-glucan or mannan exposure.


Arthritis & Rheumatism | 2000

Differentiated dendritic cells expressing nuclear RelB are predominantly located in rheumatoid synovial tissue perivascular mononuclear cell aggregates

Allison R. Pettit; Kelli P. A. MacDonald; Brendan J. O'Sullivan; Ranjeny Thomas

OBJECTIVE Differentiated dendritic cells (DC) and other antigen-presenting cells are characterized by the nuclear location of RelB, a member of the nuclear factor kappaB/Rel family. To characterize and enumerate differentiated DC in rheumatoid arthritis (RA) peripheral blood (PB), synovial fluid (SF), and synovial tissue (ST), the expression and location of RelB were examined. METHODS RelB protein expression and cellular location were determined in RA PB, SF, and ST by flow cytometry and immunohistochemical analysis of purified cells or formalin-fixed tissue. DNA-binding activity of RelB was determined by electrophoretic mobility shift-Western immunoblotting assays. RESULTS Circulating RA PBDC resembled normal immature PBDC in that they did not express intracellular RelB protein. In RA ST serial sections, cells containing nuclear RelB (nRelB) were enriched in perivascular regions. A mean +/- SD of 84 +/- 10% of these cells were DC. The remaining nRelB+,HLA-DR+ cells comprised B cells and macrophages. Only 3% of sorted SFDC contained nRelB. However, RelB present in the nucleus of these SFDC was capable of binding DNA, and therefore capable of transcriptional activity. CONCLUSION Circulating DC precursors differentiate and express RelB after entry into rheumatoid ST. Differentiated DC can thus be identified by immunohistochemistry in formalin-fixed ST. Signals for DC maturation may differ between RA ST and SF, resulting in nuclear location of RelB predominantly in ST. This is likely to have functional consequences for the DC in these sites.


Journal of Leukocyte Biology | 1999

DENDRITIC CELLS AND THE PATHOGENESIS OF RHEUMATOID ARTHRITIS

Ranjeny Thomas; Kelli P. A. MacDonald; Allison R. Pettit; Lois L. Cavanagh; Jagdish Padmanabha; Simone Zehntner

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease in which unknown arthrogenic autoantigen is presented to CD4+ T cells. The strong association of the disease with an epitope within the HLA‐DR chain shared between various alleles of HLA‐DR4 and DR1 emphasizes the importance of antigen presentation. This immune response predominantly occurs in the synovial tissue and fluid of the joints and autoreactive T cells are readily demonstrable in both the synovial compartment and blood. Circulating dendritic cells (DC) are phenotypically and functionally identical with normal peripheral blood (PB) DC. In the synovial tissue, fully differentiated perivascular DC are found in close association with T cells and with B cell follicles, sometimes containing follicular DC. These perivascular DC migrate across the activated endothelium from blood and receive differentiative signals within the joint from monocyte‐derived cytokines and CD40‐ligand+ T cells. In the SF, DC manifest an intermediate phenotype, similar to that of monocyte‐derived DC in vitro. Like a delayed‐type hypersensitivity response, the rheumatoid synovium represents an effector site. DC at many effector sites have a characteristic pattern of infiltration and differentiation. It is important to note that the effector response is not self‐limiting in RA autoimmune inflammation. In this article, we argue that the presentation of self‐antigen by DC and by autoantibody‐producing B cells is critical for the perpetuation of the autoimmune response. Permanently arresting this ongoing immune response with either pharmaceutical agents or immunotherapy is a major challenge for immunology. J. Leukoc. Biol. 66: 286–292; 1999.

Collaboration


Dive into the Allison R. Pettit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kylie A. Alexander

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ranjeny Thomas

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Kelli P. A. MacDonald

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ellen M. Gravallese

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Susan Millard

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Andy C.K. Wu

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge