Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andy C.K. Wu is active.

Publication


Featured researches published by Andy C.K. Wu.


Journal of Bone and Mineral Research | 2011

Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model

Kylie A. Alexander; Ming K Chang; Erin Maylin; Thomas Kohler; Ralph Müller; Andy C.K. Wu; Nico van Rooijen; Matthew J. Sweet; David A. Hume; Liza J. Raggatt; Allison R. Pettit

Bone‐lining tissues contain a population of resident macrophages termed osteomacs that interact with osteoblasts in vivo and control mineralization in vitro. The role of osteomacs in bone repair was investigated using a mouse tibial bone injury model that heals primarily through intramembranous ossification and progresses through all major phases of stabilized fracture repair. Immunohistochemical studies revealed that at least two macrophage populations, F4/80+Mac‐2−/lowTRACP− osteomacs and F4/80+Mac‐2hiTRACP− inflammatory macrophages, were present within the bone injury site and persisted throughout the healing time course. In vivo depletion of osteomacs/macrophages (either using the Mafia transgenic mouse model or clodronate liposome delivery) or osteoclasts (recombinant osteoprotegerin treatment) established that osteomacs were required for deposition of collagen type 1+ (CT1+) matrix and bone mineralization in the tibial injury model, as assessed by quantitative immunohistology and micro–computed tomography. Conversely, administration of the macrophage growth factor colony‐stimulating factor 1 (CSF‐1) increased the number of osteomacs/macrophages at the injury site significantly with a concurrent increase in new CT1+ matrix deposition and enhanced mineralization. This study establishes osteomacs as participants in intramembranous bone healing and as targets for primary anabolic bone therapies.


bonekey Reports | 2013

Unraveling macrophage contributions to bone repair

Andy C.K. Wu; Liza J. Raggatt; Kylie A. Alexander; Allison R. Pettit

Macrophages have reemerged to prominence with widened understanding of their pleiotropic contributions to many biologies and pathologies. This includes clear advances in revealing their importance in wound healing. Here we have focused on the current state of knowledge with respect to bone repair, which has received relatively little scientific attention compared with its soft-tissue counterparts. Our detailed characterization of resident tissue macrophages residing in bone-lining tissues (osteomacs), including their pro-anabolic function, exposed a more prominent role for these cells in bone biology than previously anticipated. Recent studies have confirmed the importance of macrophages in early inflammatory processes that establish the healing cascade after bone fracture. Emerging data support that macrophage influence extends into both anabolic and catabolic phases of repair, suggesting that these cells have prolonged and diverse functions during fracture healing. More research is needed to clarify macrophage phase-specific contributions, temporospatial subpopulation variance and macrophage specific-molecular mediators. There is also clear motivation for determining whether macrophage alterations underlie compromised fracture healing. Overall, there is strong justification to pursue strategies targeting macrophages and/or their products for improving normal bone healing and overcoming failed repair.


Bone | 2010

Temporal pattern of gene expression and histology of stress fracture healing

Lisa Kidd; Alexandre S. Stephens; J.S. Kuliwaba; Nicola L. Fazzalari; Andy C.K. Wu; Mark R. Forwood

Loading of the rat ulna is an ideal model to examine stress fracture healing. The aim of this study was to undertake a detailed examination of the histology, histomorphometry and gene expression of the healing and remodelling process initiated by fatigue loading of the rat ulna. Ulnae were harvested 1, 2, 4, 6, 8, and 10 weeks following creation of a stress fracture. Stress fracture healing involved direct remodelling that progressed along the fracture line as well as woven bone proliferation at the site of the fracture. Histomorphometry demonstrated rapid progression of basic multicellular units from 1 to 4 weeks with significant slowing down of healing by 10 weeks after loading. Quantitative PCR was performed at 4 hours, 24 hours, 4 days, 7 days, and 14 days after loading. Gene expression was compared to an unloaded control group. At 4 hours after fracture, there was a marked 220-fold increase (P<0.0001) in expression of IL-6. There were also prominent peak increases in mRNA expression for OPG, COX-2, and VEGF (all P<0.0001). At 24 hours, there was a peak increase in mRNA expression for IL-11 (73-fold increase, P<0.0001). At 4 days, there was a significant increase in mRNA expression for Bcl-2, COX-1, IGF-1, OPN, and SDF-1. At 7 days, there was significantly increased mRNA expression of RANKL and OPN. Prominent, upregulation of COX-2, VEGF, OPG, SDF-1, BMP-2, and SOST prior to peak expression of RANKL indicates the importance of these factors in mediating directed remodelling of the fracture line. Dramatic, early upregulation of IL-6 and IL-11 demonstrate their central role in initiating signalling events for remodelling and stress fracture healing.


Journal of Orthopaedic Research | 2011

Bisphosphonate treatment delays stress fracture remodeling in the rat ulna

Lisa Kidd; N.R. Cowling; Andy C.K. Wu; Wendy Lee Kelly; Mark R. Forwood

Because bisphosphonates (BPs) are potent inhibitors of bone resorption, we hypothesized that they would retard direct remodeling of stress fractures. The aim of this study was to determine the effect of risedronate on direct remodeling and woven bone callus formation following stress fracture formation in the rat ulna. In 135 adult female Wistar rats, cyclic loading of the ulna created stress fractures. Rats were treated daily with oral saline, or risedronate at 0.1 or 1.0 mg/kg. From each bone, histomorphometry was performed on sections stained with toluidine blue at a standard level along the fracture. The high dose of risedronate caused a significant decrease in the percentage of repaired stress fracture and bone resorption along the stress fracture line at 6 and 10 weeks after loading (p < 0.05). At this dose, intracortical resorption was significantly reduced at 10 weeks after loading and intracortical new bone area was significantly reduced at 6 and 10 weeks. Woven bone formation and consolidation phases of stress fracture repair were not affected by low or high doses of risedronate. In conclusion, high dose bisphosphonate treatment impaired healing of a large stress fracture line by reducing the volume of bone resorbed and replaced during remodeling. We also confirmed that periosteal callus formation was not adversely affected by risedronate treatment.


Immunology and Cell Biology | 2017

Resting and injury-induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration

Kylie A. Alexander; Liza-Jane Raggatt; Susan Millard; Lena Batoon; Andy C.K. Wu; Ming-Kang Chang; David A. Hume; Allison R. Pettit

Better understanding of bone growth and regeneration mechanisms within periosteal tissues will improve understanding of bone physiology and pathology. Macrophage contributions to bone biology and repair have been established but specific investigation of periosteal macrophages has not been undertaken. We used an immunohistochemistry approach to characterize macrophages in growing murine bone and within activated periosteum induced in a mouse model of bone injury. Osteal tissue macrophages (osteomacs) and resident macrophages were distributed throughout resting periosteum. In tissues collected from 4‐week‐old mice, osteomacs were observed intimately associated with sites of periosteal diaphyseal and metaphyseal bone dynamics associated with normal growth. This included F4/80+Mac‐2−/low osteomac association with extended tracks of bone formation (modeling) on diphyseal periosteal surfaces. Although this recapitulated endosteal osteomac characteristics, there was subtle variance in the morphology and spatial organization of periosteal modeling‐associated osteomacs, which likely reflects the greater structural complexity of periosteum. Osteomacs, resident macrophages and inflammatory macrophages (F4/80+Mac‐2hi) were associated with the complex bone dynamics occurring within the periosteum at the metaphyseal corticalization zone. These three macrophage subsets were also present within activated native periosteum after bone injury across a 9‐day time course that spanned the inflammatory through remodeling bone healing phases. This included osteomac association with foci of endochondral ossification within the activated native periosteum. These observations confirm that osteomacs are key components of both osteal tissues, in spite of salient differences between endosteal and periosteal structure and that multiple macrophage subsets are involved in periosteal bone dynamics.


Journal of Orthopaedic Research | 2013

Selective and non-selective cyclooxygenase inhibitors delay stress fracture healing in the rat ulna

Lisa Kidd; Nick R. Cowling; Andy C.K. Wu; Wendy Lee Kelly; Mark R. Forwood

Anti‐inflammatory drugs are widely used to manage pain associated with stress fractures (SFxs), but little is known about their effects on healing of those injuries. We hypothesized that selective and non‐selective anti‐inflammatory treatments would retard the healing of SFx in the rat ulna. SFxs were created by cyclic loading of the ulna in Wistar rats. Ulnae were harvested 2, 4 or 6 weeks following loading. Rats were treated with non‐selective NSAID, ibuprofen (30 mg/kg/day); selective COX‐2 inhibition, [5,5‐dimethyl‐3‐3 (3 fluorophenyl)‐4‐(4 methylsulfonal) phenyl‐2 (5H)‐furanone] (DFU) (2.0 mg/kg/day); or the novel c5a anatagonist PMX53 (10 mg/kg/day, 4 and 6 weeks only); with appropriate vehicle as control. Quantitative histomorphometric measurements of SFx healing were undertaken. Treatment with the selective COX‐2 inhibitor, DFU, reduced the area of resorption along the fracture line at 2 weeks, without affecting bone formation at later stages. Treatment with the non‐selective, NSAID, ibuprofen decreased both bone resorption and bone formation so that there was significantly reduced length and area of remodeling and lamellar bone formation within the remodeling unit at 6 weeks after fracture. The C5a receptor antagonist PMX53 had no effect on SFx healing at 4 or 6 weeks after loading, suggesting that PMX53 would not delay SFx healing. Both selective COX‐2 inhibitors and non‐selective NSAIDs have the potential to compromise SFx healing, and should be used with caution when SFx is diagnosed or suspected.


bonekey Reports | 2014

Osteocyte expression of caspase-3, COX-2, IL-6 and sclerostin are spatially and temporally associated following stress fracture initiation

Andy C.K. Wu; Lisa Kidd; Nicholas R. Cowling; Wendy Lee Kelly; Mark R. Forwood

Stress fractures (SFxs) are debilitating injuries and exact mechanisms that initiate their repair incompletely understood. We hypothesised that osteocyte apoptosis and expression of cytokines and proteins such as sclerostin, VEGF, TGF-β, COX-2 and IL-6 were early signalling events to facilitate the formation of periosteal woven bone and recruitment of osteoclast precursors to the site of remodelling. A SFx was created in the right ulna of mature female wistar rats using cyclic end loading. Rats were killed 1, 4 and 7 days after loading (n=5 per group). Standard histological staining was used to examine SFx morphology and immunohistochemistry to detect the localisation of these proteins and in situ hybridisation to detect mRNA along the SFx line or gene expression to quantify the target genes. Unloaded ulnae served as controls. The labelling index of caspase-3, COX-2 and IL-6 was significantly elevated in the region of SFxs at all time points compared with controls (P<0.001). In addition, the labelling index of sclerostin protein was significantly reduced in osteocytes adjacent to the SFx region when compared with controls at all three time points (P<0.001). Both VEGF and TGF-β expressions were only localised in the woven bone. These data reinforce the involvement of osteocyte apoptosis in the healing of fatigue damage in bone, and demonstrate that local regulation of sclerostin, COX-2 and IL-6 are important signalling events associated with new bone formation and SFx remodelling.


Bone | 2013

Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts.

Huynh Nguyen; A. I. Cassady; Michael B. Bennett; Evelyne Gineyts; Andy C.K. Wu; David A. F. Morgan; Mark R. Forwood

BACKGROUND Bone allografts carry a risk of infection, so terminal sterilization by gamma irradiation at 25kGy is recommended; but is deleterious to bone quality. Contemporary bone banking significantly reduces initial allograft bioburden, questioning the need to sterilize at 25kGy. METHODS We inoculated allograft bone with Staphylococcus epidermidis and Bacillus pumilus, then exposed them to gamma irradiation at 0, 5, 10, 15, 20 and 25kGy. Mechanical and biological properties of allografts were also assessed. Our aim was to determine an optimal dose that achieves sterility assurance while minimizing deleterious effects on allograft tissue. RESULTS 20-25kGy eliminated both organisms at concentrations from 10(1) to 10(3)CFU, while 10-15kGy sterilized bone samples to a bioburden concentration of 10(2)CFU. Irradiation did not generate pro-inflammatory bone surfaces, as evidenced by macrophage activation, nor did it affect attachment or proliferation of osteoblasts. At doses ≥10kGy, the toughness of cortical bone was reduced (P<0.05), and attachment and fusion of osteoclasts onto irradiated bone declined at 20 and 25kGy (P<0.05). There was no change in collagen cross-links, but a significant dose-response increase in denatured collagen (P<0.05). CONCLUSIONS Our mechanical and cell biological data converge on 15kGy as a threshold for radiation sterilization of bone allografts. Between 5 and 15kGy, bone banks can undertake validation that provides allografts with an acceptable sterility assurance level, improving their strength and biocompatibility significantly. CLINICAL RELEVANCE The application of radiation sterilization doses between 5 and 15kGy will improve bone allograft mechanical performance and promote integration, while retaining sterility assurance levels. Improved quality of allograft bone will promote superior clinical outcomes.


The Journal of Pathology | 2016

CD169(+) macrophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer.

Andy C.K. Wu; Yaowu He; Amy Broomfield; Nicoll J Paatan; Brittney S. Harrington; Hsu-Wen Tseng; Elizabeth A. Beaven; Deirdre Margaret Kiernan; Peter Swindle; Adrian Clubb; Jean-Pierre Levesque; Ingrid G. Winkler; Ming-Tat Ling; Bhuvana Srinivasan; John D. Hooper; Allison R. Pettit

Skeletal metastases present a major clinical challenge for prostate cancer patient care, inflicting distinctive mixed osteoblastic and osteolytic lesions that cause morbidity and refractory skeletal complications. Macrophages are abundant in bone and bone marrow and can influence both osteoblast and osteoclast function in physiology and pathology. Herein, we examined the role of macrophages in prostate cancer bone lesions, particularly the osteoblastic response. First, macrophage and lymphocyte distributions were qualitatively assessed in patients prostate cancer skeletal lesions by immunohistochemistry. Second, macrophage functional contributions to prostate tumour growth in bone were explored using an immune‐competent mouse model combined with two independent approaches to achieve in vivo macrophage depletion: liposome encapsulated clodronate that depletes phagocytic cells (including macrophages and osteoclasts); and targeted depletion of CD169+ macrophages using a suicide gene knock‐in model. Immunohistochemistry and histomorphometric analysis were performed to quantitatively assess cancer‐induced bone changes. In human bone metastasis specimens, CD68+ macrophages were consistently located within the tumour mass. Osteal macrophages (osteomacs) were associated with pathological woven bone within the metastatic lesions. In contrast, lymphocytes were inconsistently present in prostate cancer skeletal lesions and when detected, had varied distributions. In the immune‐competent mouse model, CD169+ macrophage ablation significantly inhibited prostate cancer‐induced woven bone formation, suggesting that CD169+ macrophages within pathological woven bone are integral to tumour‐induced bone formation. In contrast, pan‐phagocytic cell, but not targeted CD169+ macrophage depletion resulted in increased tumour mass, indicating that CD169− macrophage subset(s) and/or osteoclasts influenced tumour growth. In summary, these observations indicate a prominent role for macrophages in prostate cancer bone metastasis that may be therapeutically targetable to reduce the negative skeletal impacts of this malignancy, including tumour‐induced bone modelling. Copyright


American Journal of Pathology | 2013

Absence of B cells does not compromise intramembranous bone formation during healing in a tibial injury model.

Liza J. Raggatt; Kylie A. Alexander; Simranpreet Kaur; Andy C.K. Wu; Kelli P. A. MacDonald; Allison R. Pettit

Previous studies have generated conflicting results regarding the contribution of B cells to bone formation during physiology and repair. Here, we have investigated the role of B cells in osteoblast-mediated intramembranous anabolic bone modeling. Immunohistochemistry for CD45 receptor expression indicated that B cells had no propensity or aversion for endosteal regions or sites of bone modeling and/or remodeling in wild-type mice. In the endocortical diaphyseal region, quantitative immunohistology demonstrated that young wild-type and B-cell deficient mice had similar amounts of osteocalcin(+) osteoblast bone modeling surface. The degree of osteoblast-associated osteomac canopy was also comparable in these mice inferring that bone modeling cellular units were preserved in the absence of B cells. In a tibial injury model, only rare CD45 receptor positive B cells were located within areas of high anabolic activity, including minimal association with osterix(+) osteoblast-lineage committed mesenchymal cells in wild-type mice. Quantitative immunohistology demonstrated that collagen type I matrix deposition and macrophage and osteoclast distribution within the injury site were not compromised by the absence of B cells. Overall, osteoblast distribution during normal growth and bone healing via intramembranous ossification proceeded normally in the absence of B cells. These observations support that in vivo, these lymphoid cells have minimal influence, or at most, make redundant contributions to osteoblast function during anabolic bone modeling via intramembranous mechanisms.

Collaboration


Dive into the Andy C.K. Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kylie A. Alexander

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. I. Cassady

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Susan Millard

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge