Allister Crow
University of East Anglia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Allister Crow.
Biochimica et Biophysica Acta | 2010
Nick E. Le Brun; Allister Crow; Michael E. P. Murphy; A. Grant Mauk; Geoffrey R. Moore
BACKGROUND To satisfy their requirement for iron while at the same time countering the toxicity of this highly reactive metal ion, prokaryotes have evolved proteins belonging to two distinct sub-families of the ferritin family: the bacterioferritins (BFRs) and the bacterial ferritins (Ftns). Recently, Ftn homologues have also been identified and characterised in archaeon species. All of these prokaryotic ferritins function by solubilising and storing large amounts of iron in the form of a safe but bio-available mineral. SCOPE OF REVIEW The mechanism(s) by which the iron mineral is formed by these proteins is the subject of much current interest. Here we review the available information on these proteins, with particular emphasis on significant advances resulting from recent structural, spectroscopic and kinetic studies. MAJOR CONCLUSIONS Current understanding indicates that at least two distinct mechanisms are in operation in prokaryotic ferritins. In one, the ferroxidase centre acts as a true catalytic centre in driving Fe(2+) oxidation in the cavity; in the other, the centre acts as a gated iron pore by oxidising Fe(2+) and transferring the resulting Fe(3+) into the central cavity. GENERAL SIGNIFICANCE The prokaryotic ferritins exhibit a wide variation in mechanisms of iron core mineralisation. The basis of these differences lies, at least in part, in structural differences at and around the catalytic centre. However, it appears that more subtle differences must also be important in controlling the iron chemistry of these remarkable proteins.
Journal of Biological Chemistry | 2009
Paul R. Race; Matthew L. Bentley; Jeff A. Melvin; Allister Crow; Richard K. Hughes; Wendy Smith; Richard B. Sessions; Michael A. Kehoe; Dewey G. McCafferty; Mark J. Banfield
Sortases are a family of Gram-positive bacterial transpeptidases that anchor secreted proteins to bacterial cell surfaces. These include many proteins that play critical roles in the virulence of Gram-positive bacterial pathogens such that sortases are attractive targets for development of novel antimicrobial agents. All Gram-positive pathogens express a “housekeeping” sortase that recognizes the majority of secreted proteins containing an LPXTG wall-sorting motif and covalently attaches these to bacterial cell wall peptidoglycan. Many Gram-positive pathogens also express additional sortases that link a small number of proteins, often with variant wall-sorting motifs, to either other surface proteins or peptidoglycan. To better understand the mechanisms of catalysis and substrate recognition by the housekeeping sortase produced by the important human pathogen Streptococcus pyogenes, the crystal structure of this protein has been solved and its transpeptidase activity established in vitro. The structure reveals a novel arrangement of key catalytic residues in the active site of a sortase, the first that is consistent with kinetic analysis. The structure also provides a complete description of residue positions surrounding the active site, overcoming the limitation of localized disorder in previous structures of sortase A-type proteins. Modification of the active site Cys through oxidation to its sulfenic acid form or by an alkylating reagent supports a role for a reactive thiol/thiolate in the catalytic mechanism. These new insights into sortase structure and function could have important consequences for inhibitor design.
Journal of the American Chemical Society | 2009
Allister Crow; Tamara L. Lawson; Allison Lewin; Geoffrey R. Moore; Nick E. Le Brun
Ferritin proteins function to detoxify, solubilize and store cellular iron by directing the synthesis of a ferric oxyhydroxide mineral solubilized within the proteins central cavity. Here, through the application of X-ray crystallographic and kinetic methods, we report significant new insight into the mechanism of mineralization in a bacterioferritin (BFR). The structures of nonheme iron-free and di-Fe(2+) forms of BFR showed that the intrasubunit catalytic center, known as the ferroxidase center, is preformed, ready to accept Fe(2+) ions with little or no reorganization. Oxidation of the di-Fe(2+) center resulted in a di-Fe(3+) center, with bridging electron density consistent with a mu-oxo or hydro bridged species. The mu-oxo bridged di-Fe(3+) center appears to be stable, and there is no evidence that Fe(3+)species are transferred into the core from the ferroxidase center. Most significantly, the data also revealed a novel Fe(2+) binding site on the inner surface of the protein, lying approximately 10 A directly below the ferroxidase center, coordinated by only two residues, His46 and Asp50. Kinetic studies of variants containing substitutions of these residues showed that the site is functionally important. In combination, the data support a model in which the ferroxidase center functions as a true catalytic cofactor, rather than as a pore for the transfer of iron into the central cavity, as found for eukaryotic ferritins. The inner surface iron site appears to be important for the transfer of electrons, derived from Fe(2+) oxidation in the cavity, to the ferroxidase center. Bacterioferritin may represent an evolutionary link between ferritins and class II di-iron proteins not involved in iron metabolism.
Journal of Biological Chemistry | 2010
Jonathan A. Pointon; Wendy Smith; Gerhard Saalbach; Allister Crow; Michael A. Kehoe; Mark J. Banfield
Many bacterial pathogens present adhesins at the tips of long macromolecular filaments known as pili that are often important virulence determinants. Very little is known about how pili presented by Gram-positive pathogens mediate host cell binding. The crystal structure of a pilus adhesin from the important human pathogen Streptococcus pyogenes reveals an internal thioester bond formed between the side chains of a cysteine and a glutamine residue. The presence of the thioester was verified using UV-visible spectroscopy and mass spectrometry. This unusual bond has only previously been observed in thioester domains of complement and complement-like proteins where it is used to form covalent attachment to target molecules. The structure also reveals two intramolecular isopeptide bonds, one of these formed through a Lys/Asp residue pair, which are strategically positioned to confer protein stability. Removal of the internal thioester by allele-replacement mutagenesis in S. pyogenes severely compromises bacterial adhesion to model host cells. Although current paradigms of bacterial/host cell interaction envisage strong non-covalent interactions, the present study suggests cell adhesion could also involve covalent bonds.
Journal of Biological Chemistry | 2006
Allison Lewin; Allister Crow; Arthur Oubrie; Nick E. Le Brun
ResA, an extracytoplasmic thioredoxin from Bacillus subtilis, acts in cytochrome c maturation by reducing the disulfide bond present in apocytochromes prior to covalent attachment of heme. This reaction is (and has to be) specific, as broad substrate specificity would result in unproductive shortcircuiting with the general oxidizing thioredoxin(s) present in the same compartment. Using mutational analysis and subsequent biochemical and structural characterization of active site variants, we show that reduced ResA displays unusually low reactivity at neutral pH, consistent with the observed high pKa values >8 for both active site cysteines. Residue Glu80 is shown to play a key role in controlling the acid-base properties of the active site. A model in which substrate binding dramatically enhances the reactivity of the active site cysteines is proposed to account for the specificity of the protein. Such a substratemediated activation mechanism is likely to have wide relevance for extracytoplasmic thioredoxins.
Journal of Biological Chemistry | 2009
Allister Crow; Allison Lewin; Oliver Hecht; Mirja Carlsson Möller; Geoffrey R. Moore; Lars Hederstedt; Nick E. Le Brun
BdbD is a thiol:disulfide oxidoreductase (TDOR) from Bacillus subtilis that functions to introduce disulfide bonds in substrate proteins/peptides on the outside of the cytoplasmic membrane and, as such, plays a key role in disulfide bond management. Here we demonstrate that the protein is membrane-associated in B. subtilis and present the crystal structure of the soluble part of the protein lacking its membrane anchor. This reveals that BdbD is similar in structure to Escherichia coli DsbA, with a thioredoxin-like domain with an inserted helical domain. A major difference, however, is the presence in BdbD of a metal site, fully occupied by Ca2+, at an inter-domain position some 14 Å away from the CXXC active site. The midpoint reduction potential of soluble BdbD was determined as −75 mV versus normal hydrogen electrode, and the active site N-terminal cysteine thiol was shown to have a low pKa, consistent with BdbD being an oxidizing TDOR. Equilibrium unfolding studies revealed that the oxidizing power of the protein is based on the instability introduced by the disulfide bond in the oxidized form. The crystal structure of Ca2+-depleted BdbD showed that the protein remained folded, with only minor conformational changes. However, the reduced form of Ca2+-depleted BdbD was significantly less stable than reduced Ca2+-containing protein, and the midpoint reduction potential was shifted by approximately −20 mV, suggesting that Ca2+ functions to boost the oxidizing power of the protein. Finally, we demonstrate that electron exchange does not occur between BdbD and B. subtilis ResA, a low potential extra-cytoplasmic TDOR.
Biochemical Journal | 2008
Allison Lewin; Allister Crow; Christopher T. C. Hodson; Lars Hederstedt; Nick E. Le Brun
The thiol-disulfide oxidoreductase ResA from Bacillus subtilis fulfils a reductive role in cytochrome c maturation. The pK(a) values for the CEPC (one-letter code) active-site cysteine residues of ResA are unusual for thioredoxin-like proteins in that they are both high (>8) and within 0.5 unit of each other. To determine the contribution of the inter-cysteine dipeptide of ResA to its redox and acid-base properties, three variants (CPPC, CEHC and CPHC) were generated representing a stepwise conversion into the active-site sequence of the high-potential DsbA protein from Escherichia coli. The substitutions resulted in large decreases in the pK(a) values of both the active-site cysteine residues: in CPHC (DsbA-type) ResA, DeltapK(a) values of -2.5 were measured for both cysteine residues. Increases in midpoint reduction potentials were also observed, although these were comparatively small: CPHC (DsbA-type) ResA exhibited an increase of +40 mV compared with the wild-type protein. Unfolding studies revealed that, despite the observed differences in the properties of the reduced proteins, changes in stability were largely confined to the oxidized state. High-resolution structures of two of the variants (CEHC and CPHC ResA) in their reduced states were determined and are discussed in terms of the observed changes in properties. Finally, the in vivo functional properties of CEHC ResA are shown to be significantly affected compared with those of the wild-type protein.
FEBS Letters | 2014
Philip Hinchliffe; Nicholas P. Greene; Neil G. Paterson; Allister Crow; Colin Hughes; Vassilis Koronakis
Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α‐helical coiled‐coil, lipoyl, and β‐barrel domains, but lacks the fourth membrane‐proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α‐hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β‐barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal.
Biochemistry | 2009
Tamara L. Lawson; Allister Crow; Allison Lewin; Samina Yasmin; Geoffrey R. Moore; Nick E. Le Brun
Ferritins solubilize and detoxify the essential metal iron through formation of a ferric mineral within the proteins central cavity. Key to this activity is an intrasubunit catalytic dinuclear iron center called the ferroxidase center. Here we show that the fluorescence intensity of Escherichia coli bacterioferritin (BFR), due to the presence of two tryptophan residues (Trp35 and Trp133) in each of the 24 subunits, is highly sensitive to the iron status of the ferroxidase center and is quenched to different extents by Fe2+ and Fe3+. Recovery of the quench following oxidation of Fe2+ to Fe3+ at the ferroxidase center was not observed, indicating that the di-Fe3+ form of the center is stable. Studies of the single-tryptophan variants W35F and W133F showed that Trp133, which lies approximately 10 A from the ferroxidase center, is primarily responsible for the observed fluorescence sensitivity to iron, while studies of a stable E. coli BFR subunit dimer demonstrated that the observed quench properties are principally derived from the interaction of iron with tryptophan residues within the subunit dimer. A double-tryptophan variant (W35F/W133F) was found to exhibit fluorescence from the seven tyrosine residues present in each subunit, which was also sensitive to the iron status of the ferroxidase center. Finally, we demonstrate using Zn2+, a potent competitive inhibitor of Fe2+ binding and oxidation, that the fluorescence response can be used to monitor the loss of iron from the ferroxidase center.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Allister Crow; Richard K. Hughes; Frédéric Taieb; Eric Oswald; Mark J. Banfield
The cycle inhibiting factors (Cifs) are a family of translocated effector proteins, found in diverse pathogenic bacteria, that interfere with the host cell cycle by catalyzing the deamidation of a specific glutamine residue (Gln40) in NEDD8 and the related protein ubiquitin. This modification prevents recycling of neddylated cullin-RING ligases, leading to stabilization of various cullin-RING ligase targets, and also prevents polyubiquitin chain formation. Here, we report the crystal structures of two Cif/NEDD8 complexes, revealing a conserved molecular interface that defines enzyme/substrate recognition. Mutation of residues forming the interface suggests that shape complementarity, rather than specific individual interactions, is a critical feature for complex formation. We show that Cifs from diverse bacteria bind NEDD8 in vitro and conclude that they will all interact with their substrates in the same way. The “occluding loop” in Cif gates access to Gln40 by forcing a conformational change in the C terminus of NEDD8. We used native PAGE to follow the activity of Cif from the human pathogen Yersinia pseudotuberculosis and selected variants, and the position of Gln40 in the active site has allowed us to propose a catalytic mechanism for these enzymes.