Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nick E. Le Brun is active.

Publication


Featured researches published by Nick E. Le Brun.


PLOS ONE | 2008

The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster

Nicholas P. Tucker; Matthew G. Hicks; Thomas A. Clarke; Jason C. Crack; Govind Chandra; Nick E. Le Brun; Ray Dixon; Matthew I. Hutchings

The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity.


Journal of the American Chemical Society | 2011

Mechanistic Insight into the Nitrosylation of the [4Fe−4S] Cluster of WhiB-like Proteins

Jason C. Crack; Laura J. Smith; Melanie R. Stapleton; Jamie N. T. Peck; Nicholas J. Watmough; Mark J. Buttner; Roger S. Buxton; Jeffrey Green; Vasily S. Oganesyan; Andrew J. Thomson; Nick E. Le Brun

The reactivity of protein bound iron-sulfur clusters with nitric oxide (NO) is well documented, but little is known about the actual mechanism of cluster nitrosylation. Here, we report studies of members of the Wbl family of [4Fe-4S] containing proteins, which play key roles in regulating developmental processes in actinomycetes, including Streptomyces and Mycobacteria, and have been shown to be NO responsive. Streptomyces coelicolor WhiD and Mycobacterium tuberculosis WhiB1 react extremely rapidly with NO in a multiphasic reaction involving, remarkably, 8 NO molecules per [4Fe-4S] cluster. The reaction is 10(4)-fold faster than that observed with O(2) and is by far the most rapid iron-sulfur cluster nitrosylation reaction reported to date. An overall stoichiometry of [Fe(4)S(4)(Cys)(4)](2-) + 8NO → 2[Fe(I)(2)(NO)(4)(Cys)(2)](0) + S(2-) + 3S(0) has been established by determination of the sulfur products and their oxidation states. Kinetic analysis leads to a four-step mechanism that accounts for the observed NO dependence. DFT calculations suggest the possibility that the nitrosylation product is a novel cluster [Fe(I)(4)(NO)(8)(Cys)(4)](0) derived by dimerization of a pair of Roussins red ester (RRE) complexes.


Biochemical Journal | 2010

Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron–sulfur cluster

Laura J. Smith; Melanie R. Stapleton; Gavin J. M. Fullstone; Jason C. Crack; Andrew J. Thomson; Nick E. Le Brun; Debbie M. Hunt; Evelyn Harvey; Salvatore Adinolfi; Roger S. Buxton; Jeffrey Green

Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. In the present study it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however, in the presence of apo-WhiB1, transcription was severely inhibited, irrespective of the presence or absence of the CRP (cAMP receptor protein) Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections.


Trends in Microbiology | 2010

There's NO stopping NsrR, a global regulator of the bacterial NO stress response

Nicholas P. Tucker; Nick E. Le Brun; Ray Dixon; Matthew I. Hutchings

Nitric oxide (NO) is a toxic, free radical gas with diverse biological roles in eukaryotes and bacteria, being involved in signalling, vasodilation, blood clotting and immunity and as an intermediate in microbial denitrification. Several bacterial transcriptional regulators sense this molecule and regulate the expression of genes involved in both NO detoxification and NO damage repair. However, a recently discovered NO sensing repressor, named NsrR, has gained attention because of its suggested role as a global regulator of the bacterial NO stress response. Recent advances in biochemical and transcriptomic studies of NsrR make it timely to review the current evidence for NsrR as a global regulator and to speculate on the recent controversy over its NO sensing mechanism.


Biochimica et Biophysica Acta | 2010

Iron core mineralisation in prokaryotic ferritins

Nick E. Le Brun; Allister Crow; Michael E. P. Murphy; A. Grant Mauk; Geoffrey R. Moore

BACKGROUND To satisfy their requirement for iron while at the same time countering the toxicity of this highly reactive metal ion, prokaryotes have evolved proteins belonging to two distinct sub-families of the ferritin family: the bacterioferritins (BFRs) and the bacterial ferritins (Ftns). Recently, Ftn homologues have also been identified and characterised in archaeon species. All of these prokaryotic ferritins function by solubilising and storing large amounts of iron in the form of a safe but bio-available mineral. SCOPE OF REVIEW The mechanism(s) by which the iron mineral is formed by these proteins is the subject of much current interest. Here we review the available information on these proteins, with particular emphasis on significant advances resulting from recent structural, spectroscopic and kinetic studies. MAJOR CONCLUSIONS Current understanding indicates that at least two distinct mechanisms are in operation in prokaryotic ferritins. In one, the ferroxidase centre acts as a true catalytic centre in driving Fe(2+) oxidation in the cavity; in the other, the centre acts as a gated iron pore by oxidising Fe(2+) and transferring the resulting Fe(3+) into the central cavity. GENERAL SIGNIFICANCE The prokaryotic ferritins exhibit a wide variation in mechanisms of iron core mineralisation. The basis of these differences lies, at least in part, in structural differences at and around the catalytic centre. However, it appears that more subtle differences must also be important in controlling the iron chemistry of these remarkable proteins.


Molecular Microbiology | 2002

Genes required for cytochrome c synthesis in Bacillus subtilis

Nick E. Le Brun; Jenny Bengtsson; Lars Hederstedt

Cytochromes of c‐type contain covalently bound haem and in bacteria are located on the periplasmic side of the cytoplasmic membrane. More than eight different gene products have been identified as being specifically required for the synthesis of cytochromes c in Gram‐negative bacteria. Corresponding genes are not found in the genome sequences of Gram‐positive bacteria. Using two random mutagenesis approaches, we have searched for cytochrome c biogenesis genes in the Gram‐positive bacterium Bacillus subtilis. Three genes, resB, resC and ccdA, were identified. CcdA has been found previously and is required for a late step in cytochrome c synthesis and also plays a role in spore synthesis. No function has previously been assigned for ResB and ResC but these predicted membrane proteins show sequence similarity to proteins required for cytochrome c synthesis in chloroplasts. Attempts to inactivate resB and resC in B. subtilis have indicated that these genes are essential for growth. We demonstrate that various nonsense mutations in resB or resC can block synthesis of cytochromes c with no effect on other types of cytochromes and little effect on sporulation and growth. The results strongly support the recent proposal that Gram‐positive bacteria, cyanobacteria, ε‐proteobacteria, and chloroplasts have a similar type of machinery for cytochrome c synthesis (System II), which is very different from those of most Gram‐negative bacteria (System I) and mitochondria (System III).


Proceedings of the National Academy of Sciences of the United States of America | 2007

Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR.

Jason C. Crack; Jeffrey Green; Myles R. Cheesman; Nick E. Le Brun; Andrew J. Thomson

In Escherichia coli, the switch between aerobic and anaerobic metabolism is controlled primarily by FNR (regulator of fumarate and nitrate reduction), the protein that regulates the transcription of >100 genes in response to oxygen. Under oxygen-limiting conditions, FNR binds a [4Fe-4S]2+ cluster, generating a transcriptionally active dimeric form. Upon exposure to oxygen the cluster converts to a [2Fe-2S]2+ form, leading to dissociation of the protein into monomers, which are incapable of binding DNA with high affinity. The mechanism of cluster conversion together with the nature of the products of conversion is of considerable current interest. Here, we demonstrate that [4Fe-4S]2+ to [2Fe-2S]2+ cluster conversion, in both native and reconstituted [4Fe-4S] FNR, proceeds via a one electron oxidation of the cluster, to give a [3Fe-4S]1+ cluster intermediate, with the release of one Fe2+ ion and a superoxide ion. The cluster intermediate subsequently rearranges spontaneously to form the [2Fe-2S]2+ cluster, with the release of a Fe3+ ion and, as previously shown, two sulfide ions. Superoxide ion undergoes dismutation to hydrogen peroxide and oxygen. This mechanism, a one electron activation of the cluster, coupled to catalytic recycling of the resulting superoxide ion back to oxygen, provides a means of amplifying the sensitivity of [4Fe-4S] FNR to its signal molecule.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein

Bo Zhang; Jason C. Crack; Sowmya Subramanian; Jeffrey Green; Andrew J. Thomson; Nick E. Le Brun; Michael K. Johnson

Fumarate and nitrate reduction (FNR) regulatory proteins are O2-sensing bacterial transcription factors that control the switch between aerobic and anaerobic metabolism. Under anaerobic conditions [4Fe-4S]2+-FNR exists as a DNA-binding homodimer. In response to elevated oxygen levels, the [4Fe-4S]2+ cluster undergoes a rapid conversion to a [2Fe-2S]2+ cluster, resulting in a dimer-to-monomer transition and loss of site-specific DNA binding. In this work, resonance Raman and UV-visible absorption/CD spectroscopies and MS were used to characterize the interconversion between [4Fe-4S]2+ and [2Fe-2S]2+ clusters in Escherichia coli FNR. Selective 34S labeling of the bridging sulfides in the [4Fe-4S]2+ cluster-bound form of FNR facilitated identification of resonantly enhanced Cys32S-34S stretching modes in the resonance Raman spectrum of the O2-exposed [2Fe-2S]2+ cluster-bound form of FNR. This result indicates O2-induced oxidation and retention of bridging sulfides in the form of [2Fe-2S]2+ cluster-bound cysteine persulfides. MS also demonstrates that multiple cysteine persulfides are formed on O2 exposure of [4Fe-4S]2+-FNR. The [4Fe-4S]2+ cluster in FNR can also be regenerated from the cysteine persulfide-coordinated [2Fe-2S]2+ cluster by anaerobic incubation with DTT and Fe2+ ion in the absence of exogenous sulfide. Resonance Raman data indicate that this type of cluster conversion involving sulfide oxidation is not unique to FNR, because it also occurs in O2-exposed forms of O2-sensitive [4Fe-4S] clusters in radical S-adenosylmethionine enzymes. The results provide fresh insight into the molecular mechanism of O2 sensing by FNR and iron-sulfur cluster conversion reactions in general, and suggest unique mechanisms for the assembly or repair of biological [4Fe-4S] clusters.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The O2 sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion

Adrian J. Jervis; Jason C. Crack; Gaye F. White; Peter J. Artymiuk; Myles R. Cheesman; Andrew J. Thomson; Nick E. Le Brun; Jeffrey Green

Fumarate and nitrate reduction regulatory (FNR) proteins are bacterial transcription factors that coordinate the switch between aerobic and anaerobic metabolism. In the absence of O2, FNR binds a [4Fe-4S]2+ cluster (ligated by Cys-20, 23, 29, 122) promoting the formation of a transcriptionally active dimer. In the presence of O2, FNR is converted into a monomeric, non-DNA-binding form containing a [2Fe-2S]2+ cluster. The reaction of the [4Fe-4S]2+ cluster with O2 has been shown to proceed via a 2-step process, an O2-dependent 1-electron oxidation to yield a [3Fe-4S]+ intermediate with release of 1 Fe2+ ion, followed by spontaneous rearrangement to the [2Fe-2S]2+ form with release of 1 Fe3+ and 2 S2− ions. Here, we show that replacement of Ser-24 by Arg, His, Phe, Trp, or Tyr enhances aerobic activity of FNR in vivo. The FNR-S24F protein incorporates a [4Fe-4S]2+ cluster with spectroscopic properties similar to those of FNR. However, the substitution enhances the stability of the [4Fe-4S]2+ cluster in the presence of O2. Kinetic analysis shows that both steps 1 and 2 are slower for FNR-S24F than for FNR. A molecular model suggests that step 1 of the FNR-S24F iron–sulfur cluster reaction with O2 is inhibited by shielding of the iron ligand Cys-23, suggesting that Cys-23 or the cluster iron bound to it is a primary site of O2 interaction. These data lead to a simple model of the FNR switch with physiological implications for the ability of FNR proteins to operate over different ranges of in vivo O2 concentrations.


Journal of Biological Chemistry | 2003

Bacillus subtilis ResA Is a Thiol-Disulfide Oxidoreductase involved in Cytochrome c Synthesis

Lýđur S. Erlendsson; Richard M. Acheson; Lars Hederstedt; Nick E. Le Brun

Covalent attachment of heme to apocytochromesc in bacteria occurs on the outside of the cytoplasmic membrane and requires two reduced cysteinyls at the heme binding site. A constructed ResA-deficient Bacillus subtilis strain was found to lack c-type cytochromes. Cytochrome csynthesis was restored in the mutant by: (i) in transexpression of resA; (ii) deficiency in BdbD, a thiol-disulfide oxidoreductase that catalyzes formation of an intramolecular disulfide bond in apocytochrome c after transfer of the polypeptide across the cytoplasmic membrane; or (iii) by addition of the reductant dithiothreitol to the growth medium. In vivo studies of ResA showed that it is membrane-associated with its thioredoxin-like domain on the outside of the cytoplasmic membrane. Analysis of a soluble form of the protein revealed two redox reactive cysteine residues with a midpoint potential of about −340 mV at pH 7. We conclude that ResA, probably together with another thiol-disulfide oxidoreductase, CcdA, is required for the reduction of the cysteinyls in the heme binding site of apocytochromec.

Collaboration


Dive into the Nick E. Le Brun's collaboration.

Top Co-Authors

Avatar

Jason C. Crack

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison Lewin

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Chloe Singleton

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allister Crow

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge