Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alok Prasad Das is active.

Publication


Featured researches published by Alok Prasad Das.


Bioresource Technology | 2011

Manganese biomining: A review.

Alok Prasad Das; Lala Behari Sukla; Nilotpala Pradhan; Sanghamitra Nayak

Biomining comprises of processing and extraction of metal from their ores and concentrates using microbial techniques. Currently this is used by the mining industry to extract copper, uranium and gold from low grade ores but not for low grade manganese ore in industrial scale. The study of microbial genomes, metabolites and regulatory pathways provide novel insights to the metabolism of bioleaching microorganisms and their synergistic action during bioleaching operations. This will promote understanding of the universal regulatory responses that the biomining microbial community uses to adapt to their changing environment leading to high metal recovery. Possibility exists of findings ways to imitate the entire process during industrial manganese biomining endeavor. This paper reviews the current status of manganese biomining research operations around the world, identifies factors that drive the selection of biomining as a processing technology, describes challenges in exploiting these innovations, and concludes with a discussion of Mn biominings future.


Biosensors and Bioelectronics | 2014

Recent advances in biosensor based endotoxin detection.

Alok Prasad Das; P.S. Kumar; S. Swain

Endotoxins also referred to as pyrogens are chemically lipopolysaccharides habitually found in food, environment and clinical products of bacterial origin and are unavoidable ubiquitous microbiological contaminants. Pernicious issues of its contamination result in high mortality and severe morbidities. Standard traditional techniques are slow and cumbersome, highlighting the pressing need for evoking agile endotoxin detection system. The early and prompt detection of endotoxin assumes prime importance in health care, pharmacological and biomedical sectors. The unparalleled recognition abilities of LAL biosensors perched with remarkable sensitivity, high stability and reproducibility have bestowed it with persistent reliability and their possible fabrication for commercial applicability. This review paper entails an overview of various trends in current techniques available and other possible alternatives in biosensor based endotoxin detection together with its classification, epidemiological aspects, thrust areas demanding endotoxin control, commercially available detection sensors and a revolutionary unprecedented approach narrating the influence of omics for endotoxin detection.


Journal of Carcinogenesis | 2010

Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

Alok Prasad Das; Susmita Mishra

Background: Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI) compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter). Materials and Methods: Our investigation involved microbial remediation of Cr(VI) without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI) were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30°C. At about 50 mg/L initial Cr(VI) concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI).


Toxicological & Environmental Chemistry | 2015

Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review

S. Ghosh; Alok Prasad Das

Titania (TiO2) has been the focus of attention of researchers since the first demonstration of its capability to generate the photocatalytic splitting of water into hydrogen and oxygen. However, there seems to be a recent surge in the research activity, involving modified TiO2 nanoparticles (NP), which are considered to be more effective due to different physicochemical properties in comparison to unmodified fine particle analogs. Several strategies have been employed to modify TiO2 to reduce recombination rates of photogenerated charge carriers to enhance the optimal functioning of TiO2. Doping with cations and anions and coupling it with another semiconductor are the most well-known modification methods used. Titania nanocomposites are known to have a plethora of applications. Photoexcitation of these particles are seen to be extraordinarily effective in eliciting microbial death which makes it an attractive candidate for the manufacturing of antimicrobial coatings. On the other hand, TiO2 induces the oxidation of various organic refractory compounds like tetracycline, sulfamethazine, and bisphenol. The photo-electrocatalytic oxidation technique which amalgamates the principle of photocatalysis and electrolysis serves as a newer, unswerving, and cost effective water treatment process. In the biomedical arena, use is now acknowledged for the photodynamic therapy of cancer, cell imaging, biological sensors, drug delivery system, and as endonucleases. In the commercial front, it is utilized in creams owing to its small particle size, which facilitates absorption through skin. It is also employed as ultraviolet blocking agents in sunscreen and commonly encountered as a brilliant white pigment in paint due to its brightness, high refractive index and resistance to discoloration. Its use in solar cells has also been reported. This review aims to encompass the new progress of modified TiO2 nanocomposites for efficient applications, emphasizing the future trends of TiO2 in arenas like healthcare, environment, biomedical, food, personal care, and pharmacy and also highlights the commercial implications of this promising nanomaterial.


Indian Journal of Occupational and Environmental Medicine | 2011

Occupational health assessment of chromite toxicity among Indian miners.

Alok Prasad Das; Shikha Singh

Elevated concentration of hexavalent chromium pollution and contamination has contributed a major health hazard affecting more than 2 lakh mine workers and inhabitants residing in the Sukinda chromite mine of Odisha, India. Despite people suffering from several forms of ill health, physical and mental deformities, constant exposure to toxic wastes and chronic diseases as a result of chromite mining, there is a tragic gap in the availability of scientific’ studies and data on the health hazards of mining in India. Occupational Safety and Health Administration, Odisha State Pollution Control Board and the Odisha Voluntary Health Association data were used to compile the possible occupational health hazards, hexavalent chromium exposure and diseases among Sukinda chromite mines workers. Studies were reviewed to determine the routes of exposure and possible mechanism of chromium induced carcinogenicity among the workers. Our studies suggest all forms of hexavalent chromium are regarded as carcinogenic to workers however the most important routes of occupational exposure to Cr (VI) are inhalation and dermal contact. This review article outlines the physical, chemical, biological and psychosocial occupational health hazards of chromite mining and associated metallurgical processes to monitor the mining environment as well as the miners exposed to these toxicants to foster a safe work environment. The authors anticipate that the outcome of this manuscript will have an impact on Indian chromite mining industry that will subsequently bring about improvements in work conditions, develop intervention experiments in occupational health and safety programs.


Biosensors and Bioelectronics | 2016

Recent advances in biosensor based diagnosis of urinary tract infection

M.S. Kumar; S. Ghosh; Sanghamitra Nayak; Alok Prasad Das

Urinary tract infections (UTIs) are potentially life threatening infections that are associated with high rates of incidence, recurrence and mortality. UTIs are characterized by several chronic infections which may lead to lethal consequences if left undiagnosed and untreated. The uropathogens are consistent across the globe. The most prevalent uropathogenic gram negative bacteria are Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Klebsiella pneumonia. Early detection and precise diagnosis of these infections will play a pivotal role in health care, pharmacological and biomedical sectors. A number of detection methods are available but their performances are not upto the mark. Therefore a more rapid, selective and highly sensitive technique for the detection and quantification of uropathogen levels in extremely minute concentrations need of the time. This review brings all the major concerns of UTI at ones doorstep such as clinical costs and incidence rate, several diagnostic approaches along with their advantages and disadvantages. Paying attention to detection approaches with emphasizing biosensor based recent developments in the quest for new diagnostics for UTI and the need for more sophisticated techniques in terms of selectivity and sensitivity is discussed.


Chemosphere | 2016

A greener approach for resource recycling: Manganese bioleaching

S. Ghosh; S. Mohanty; A. Akcil; L.B. Sukla; Alok Prasad Das

In view of unremitting diminution of mineral resources, rising energy economics along with increasing global consumption of Manganese (Mn), development of environment friendly technologies for tapping alternate sources of Mn has gained importance lately. Mn recovery from mining residues using conventional approaches is extremely expensive due to high capital and energy costs involved. However lean grade ores present in millions of tons awaits the development of competent and cost effective extractive process. Mn recovery by biomining with diverse microbes is thereby recommended as a superior and green alternative to the current pyro metallurgical techniques. The synergistic effects of different factors are known to influence microbial leaching of mineral ores which includes microbiological, mineralogical, physicochemical and process parameters. Bacterial bioleaching is mostly due to enzymatic influence, however fungal bioleaching is non enzymatic. Genomic studies on microbial diversity and an insight of its metabolic pathways provides unique dimension to the mechanism of biomining microorganisms. The extraction of Mn has a massive future prospective and will play a remarkable role in altering the situation of ever-decreasing grades of ore. This review aims to encompass the different aspects of Mn bioleaching, the plethora of organisms involved, the mechanisms driving the process and the recent trends and future prospects of this green technology.


Toxicological & Environmental Chemistry | 2014

Consequences of manganese compounds: a review

Alok Prasad Das; S. Ghosh; S. Mohanty; Lala Behari Sukla

Manufacturing of manganese (Mn) compounds, their industrial applications as well as mining overburden, has generated a potential environmental pollutant. Occupational exposure to elevated levels of Mn occurs during mining, welding, smelting and other industrial anthropogenic sources. Chronic and acute exposure of this metal pollutant leads to adverse consequences and is clinically categorized by various symptoms of neurotoxicity including cognitive, psychiatric symptoms, Parkinsons disease, extra pyramidal signs, manganism, dystonia, and motor system dysfunction. The aim of this review is to summarize the possible mechanism underlying Mn compounds-mediated neurotoxicity leading to neurodegenerative diseases. Our review endeavours to examine recent advances in research on Mn-related environmental pollution, Mn-induced poisoning, molecular mechanisms underlying Mn-induced neurotoxicity with case studies as well as current approaches employed for treatment and prevention of Mn exposure.


Journal of Basic Microbiology | 2016

Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits

S. Ghosh; S. Mohanty; Sanghamitra Nayak; Lala Behari Sukla; Alok Prasad Das

Manganese (Mn) ranks twelfth among the most exuberant metal present in the earths crust and finds its imperative application in the manufacturing steel, chemical, tannery, glass, and battery industries. Solubilisation of Mn can be performed by several bacterial strains which are useful in developing environmental friendly solutions for mining activities. The present investigation aims to isolate and characterize Mn solubilising bacteria from low grade ores from Sanindipur Manganese mine of Sundargh district in Odisha state of India. Four morphologically distinct bacterial strains showing visible growth on Mn supplemented plates were isolated. Mn solubilising ability of the bacterial strains was assessed by visualizing the lightening of the medium appearing around the growing colonies. Three isolates were gram negative and rod shaped while the remaining one was gram positive, coccobacilli. Molecular identification of the isolates was carried out by 16S rRNA sequencing and the bacterial isolates were taxonomically classified as Bacillus anthrasis MSB 2, Acinetobacter sp. MSB 5, Lysinibacillus sp. MSB 11, and Bacillus sp. MMR‐1 using BLAST algorithm. The sequences were deposited in NCBI GenBank with the accession number KP635223, KP635224, KP635225 and JQ936966, respectively. Manganese solubilisation efficiency of 40, 96, 97.5 and 48.5% were achieved by MMR‐1, MSB 2, MSB 5 and MSB 11 respectively. The efficiency of Mn solubilisation is suggested with the help of a pH variation study. The results are discussed in relation to the possible mechanisms involved in Manganese solubilisation efficiency of bacterial isolates.


Advances in Colloid and Interface Science | 2017

Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review

M.S. Kumar; Alok Prasad Das

At present, various diagnostic and therapeutic approaches are available for urinary tract infections. But, still the quest for development of more rapid, accurate and reliable approach is an unending process. The pathogens, especially uropathogens are adapting to new environments and antibiotics day by day rapidly. Therefore, urinary tract infections are evolving as hectic and difficult to eradicate, increasing the economic burden to the society. The technological advances should be able to compete the adaptability characteristics of microorganisms to combat their growth in new environments and thereby preventing their infections. Nanotechnology is at present an extensively developing area of immense scientific interest since it has diverse potential applications in biomedical field. Nanotechnology may be combined with cellular therapy approaches to overcome the limitations caused by conventional therapeutics. Nanoantibiotics and drug delivery using nanotechnology are currently growing areas of research in biomedical field. Recently, various categories of antibacterial nanoparticles and nanocarriers for drug delivery have shown their potential in the treatment of infectious diseases. Nanoparticles, compared to conventional antibiotics, are more beneficial in terms of decreasing toxicity, prevailing over resistance and lessening costs. Nanoparticles present long term therapeutic effects since they are retained in body for relatively longer periods. This review focuses on recent advances in the field of nanotechnology, principally emphasizing diagnostics and therapeutics of urinary tract infections.

Collaboration


Dive into the Alok Prasad Das's collaboration.

Top Co-Authors

Avatar

S. Ghosh

Siksha O Anusandhan University

View shared research outputs
Top Co-Authors

Avatar

Mahesh Chandra Sahu

Siksha O Anusandhan University

View shared research outputs
Top Co-Authors

Avatar

Santosh Kumar Swain

Siksha O Anusandhan University

View shared research outputs
Top Co-Authors

Avatar

Lala Behari Sukla

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

S. Mohanty

Siksha O Anusandhan University

View shared research outputs
Top Co-Authors

Avatar

Sanghamitra Nayak

Siksha O Anusandhan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nilotpala Pradhan

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

B. Bal

Siksha O Anusandhan University

View shared research outputs
Top Co-Authors

Avatar

Ishwar Chandra Behera

Siksha O Anusandhan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge