Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alper Yilmaz is active.

Publication


Featured researches published by Alper Yilmaz.


Nucleic Acids Research | 2011

AGRIS: the Arabidopsis Gene Regulatory Information Server, an update

Alper Yilmaz; Maria Katherine Mejia-Guerra; Kyle Kurz; Xiaoyu Liang; Lonnie R. Welch; Erich Grotewold

The Arabidopsis Gene Regulatory Information Server (AGRIS; http://arabidopsis.med.ohio-state.edu/) provides a comprehensive resource for gene regulatory studies in the model plant Arabidopsis thaliana. Three interlinked databases, AtTFDB, AtcisDB and AtRegNet, furnish comprehensive and updated information on transcription factors (TFs), predicted and experimentally verified cis-regulatory elements (CREs) and their interactions, respectively. In addition to significant contributions in the identification of the entire set of TF–DNA interactions, which are the key to understand the gene regulatory networks that govern Arabidopsis gene expression, tools recently incorporated into AGRIS include the complete set of words length 5–15 present in the Arabidopsis genome and the integration of AtRegNet with visualization tools, such as the recently developed ReIN application. All the information in AGRIS is publicly available and downloadable upon registration.


Plant Physiology | 2009

GRASSIUS: A Platform for Comparative Regulatory Genomics across the Grasses

Alper Yilmaz; Milton Yutaka Nishiyama; Bernardo Garcia Fuentes; Glaucia Mendes Souza; Daniel Janies; John C. Gray; Erich Grotewold

Transcription factors (TFs) are major players in gene regulatory networks and interactions between TFs and their target genes furnish spatiotemporal patterns of gene expression. Establishing the architecture of regulatory networks requires gathering information on TFs, their targets in the genome, and the corresponding binding sites. We have developed GRASSIUS (Grass Regulatory Information Services) as a knowledge-based Web resource that integrates information on TFs and gene promoters across the grasses. In its initial implementation, GRASSIUS consists of two separate, yet linked, databases. GrassTFDB holds information on TFs from maize (Zea mays), sorghum (Sorghum bicolor), sugarcane (Saccharum spp.), and rice (Oryza sativa). TFs are classified into families and phylogenetic relationships begin to uncover orthologous relationships among the participating species. This database also provides a centralized clearinghouse for TF synonyms in the grasses. GrassTFDB is linked to the grass TFome collection, which provides clones in recombination-based vectors corresponding to full-length open reading frames for a growing number of grass TFs. GrassPROMDB contains promoter and cis-regulatory element information for those grass species and genes for which enough data are available. The integration of GrassTFDB and GrassPROMDB will be accomplished through GrassRegNet as a first step in representing the architecture of grass regulatory networks. GRASSIUS can be accessed from www.grassius.org.


Genes & Development | 2012

Unraveling the KNOTTED1 regulatory network in maize meristems

Nathalie Bolduc; Alper Yilmaz; Maria Katherine Mejia-Guerra; Kengo Morohashi; Devin O'Connor; Erich Grotewold; Sarah Hake

KNOTTED1 (KN1)-like homeobox (KNOX) transcription factors function in plant meristems, self-renewing structures consisting of stem cells and their immediate daughters. We defined the KN1 cistrome in maize inflorescences and found that KN1 binds to several thousand loci, including 643 genes that are modulated in one or multiple tissues. These KN1 direct targets are strongly enriched for transcription factors (including other homeobox genes) and genes participating in hormonal pathways, most significantly auxin, demonstrating that KN1 plays a key role in orchestrating the upper levels of a hierarchical gene regulatory network that impacts plant meristem identity and function.


The Plant Cell | 2012

A Genome-Wide Regulatory Framework Identifies Maize Pericarp Color1 Controlled Genes

Kengo Morohashi; María Isabel Casas; Lorena Falcone Ferreyra; Maria Katherine Mejia-Guerra; Lucille Pourcel; Alper Yilmaz; Antje Feller; Bruna Carvalho; Julia Emiliani; Eduardo Rodriguez; Silvina Pellegrinet; Michael D. McMullen; Paula Casati; Erich Grotewold

This study combines high-throughput RNA sequencing and chromatin immunoprecipitation and sequencing to examine the effect of Pericarp Color1 (P1) on global gene expression in maize pericarps and silks, finding that, in addition to regulating flavonoid biosynthesis genes, P1 modulates the expression of a much larger gene set involved in primary metabolism and production of other specialized compounds. Pericarp Color1 (P1) encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize (Zea mays) silks and red phlobaphene pigments in pericarps and other floral tissues, which makes P1 an important visual marker. Using genome-wide expression analyses (RNA sequencing) in pericarps and silks of plants with contrasting P1 alleles combined with chromatin immunoprecipitation coupled with high-throughput sequencing, we show here that the regulatory functions of P1 are much broader than the activation of genes corresponding to enzymes in a branch of flavonoid biosynthesis. P1 modulates the expression of several thousand genes, and ∼1500 of them were identified as putative direct targets of P1. Among them, we identified F2H1, corresponding to a P450 enzyme that converts naringenin into 2-hydroxynaringenin, a key branch point in the P1-controlled pathway and the first step in the formation of insecticidal C-glycosyl flavones. Unexpectedly, the binding of P1 to gene regulatory regions can result in both gene activation and repression. Our results indicate that P1 is the major regulator for a set of genes involved in flavonoid biosynthesis and a minor modulator of the expression of a much larger gene set that includes genes involved in primary metabolism and production of other specialized compounds.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets

Daniel Arango; Kengo Morohashi; Alper Yilmaz; Kouji Kuramochi; Arti Parihar; Bledi Brahimaj; Erich Grotewold; Andrea I. Doseff

Significance The beneficial health effects of dietary phytochemicals make them promising candidates for treatment and prevention of multiple diseases. However, cellular targets for dietary components remain largely unknown. By combining phage display with high-throughput sequencing, we identified 160 human targets of apigenin, a flavonoid abundant in fruits and vegetables. The apigenin targets include hnRNPA2, a factor associated with numerous cellular malignancies and involved in mRNA metabolism/splicing. We show that, by inhibiting hnRNPA2 dimerization, apigenin affects the alternative splicing of key mRNAs. These findings provide a perspective on how dietary phytochemicals function and what distinguishes their action from pharmaceutical drugs. Flavonoids constitute the largest class of dietary phytochemicals, adding essential health value to our diet, and are emerging as key nutraceuticals. Cellular targets for dietary phytochemicals remain largely unknown, posing significant challenges for the regulation of dietary supplements and the understanding of how nutraceuticals provide health value. Here, we describe the identification of human cellular targets of apigenin, a flavonoid abundantly present in fruits and vegetables, using an innovative high-throughput approach that combines phage display with second generation sequencing. The 160 identified high-confidence candidate apigenin targets are significantly enriched in three main functional categories: GTPase activation, membrane transport, and mRNA metabolism/alternative splicing. This last category includes the heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2), a factor involved in splicing regulation, mRNA stability, and mRNA transport. Apigenin binds to the C-terminal glycine-rich domain of hnRNPA2, preventing hnRNPA2 from forming homodimers, and therefore, it perturbs the alternative splicing of several human hnRNPA2 targets. Our results provide a framework to understand how dietary phytochemicals exert their actions by binding to many functionally diverse cellular targets. In turn, some of them may modulate the activity of a large number of downstream genes, which is exemplified here by the effects of apigenin on the alternative splicing activity of hnRNPA2. Hence, in contrast to small-molecule pharmaceuticals designed for defined target specificity, dietary phytochemicals affect a large number of cellular targets with varied affinities that, combined, result in their recognized health benefits.


PLOS Pathogens | 2012

Thriving under Stress: Selective Translation of HIV-1 Structural Protein mRNA during Vpr-Mediated Impairment of eIF4E Translation Activity

Amit Sharma; Alper Yilmaz; Kim Marsh; Alan Cochrane; Kathleen Boris-Lawrie

Translation is a regulated process and is pivotal to proper cell growth and homeostasis. All retroviruses rely on the host translational machinery for viral protein synthesis and thus may be susceptible to its perturbation in response to stress, co-infection, and/or cell cycle arrest. HIV-1 infection arrests the cell cycle in the G2/M phase, potentially disrupting the regulation of host cell translation. In this study, we present evidence that HIV-1 infection downregulates translation in lymphocytes, attributable to the cell cycle arrest induced by the HIV-1 accessory protein Vpr. The molecular basis of the translation suppression is reduced accumulation of the active form of the translation initiation factor 4E (eIF4E). However, synthesis of viral structural proteins is sustained despite the general suppression of protein production. HIV-1 mRNA translation is sustained due to the distinct composition of the HIV-1 ribonucleoprotein complexes. RNA-coimmunoprecipitation assays determined that the HIV-1 unspliced and singly spliced transcripts are predominantly associated with nuclear cap binding protein 80 (CBP80) in contrast to completely-spliced viral and cellular mRNAs that are associated with eIF4E. The active translation of the nuclear cap binding complex (CBC)-bound viral mRNAs is demonstrated by ribosomal RNA profile analyses. Thus, our findings have uncovered that the maintenance of CBC association is a novel mechanism used by HIV-1 to bypass downregulation of eIF4E activity and sustain viral protein synthesis. We speculate that a subset of CBP80-bound cellular mRNAs contribute to recovery from significant cellular stress, including human retrovirus infection.


Current HIV Research | 2006

Retrovirus translation initiation: Issues and hypotheses derived from study of HIV-1

Alper Yilmaz; Cheryl Bolinger; Kathleen Boris-Lawrie

Human immunodeficiency virus type 1 (HIV-1) has a small, multifunctional genome that encodes a relatively large and complex proteome. The virus has adopted specialized post-transcriptional control mechanisms to maximize its coding capacity while economically maintaining the information stored in cis-acting replication sequences. The conserved features of the 5 untranslated region of all viral transcripts suggest they are poor substrates for cap-dependent ribosome scanning and provide a compelling rationale for internal initiation of translation. This article summarizes key experimental results of studies that have evaluated HIV-1 translation initiation. A model is discussed in which cap-dependent and cap-independent initiation mechanisms of HIV-1 co-exist to ensure viral protein production in the context of 1) structured replication motifs that inhibit ribosome scanning, and 2) alterations in host translation machinery in response to HIV-1 infection or other cellular stresses. We discuss key issues that remain to be understood and suggest parameters to validate internal initiation activity in HIV-1 and other retroviruses.


Nucleic Acids Research | 2007

RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1

Cheryl Bolinger; Alper Yilmaz; Tiffiney Roberts Hartman; Melinda Butsch Kovacic; Soledad Fernandez; Jianxin Ye; Mary Forget; Patrick L. Green; Kathleen Boris-Lawrie

The 5′ untranslated region (UTR) of retroviruses contain structured replication motifs that impose barriers to efficient ribosome scanning. Two RNA structural motifs that facilitate efficient translation initiation despite a complex 5′ UTR are internal ribosome entry site (IRES) and 5′ proximal post-transcriptional control element (PCE). Here, stringent RNA and protein analyses determined the 5′ UTR of spleen necrosis virus (SNV), reticuloendotheliosis virus A (REV-A) and human T-cell leukemia virus type 1 (HTLV-1) exhibit PCE activity, but not IRES activity. Assessment of SNV translation initiation in the natural context of the provirus determined that SNV is reliant on a cap-dependent initiation mechanism. Experiments with siRNAs identified that REV-A and HTLV-1 PCE modulate post-transcriptional gene expression through interaction with host RNA helicase A (RHA). Analysis of hybrid SNV/HTLV-1 proviruses determined SNV PCE facilitates Rex/Rex responsive element-independent Gag production and interaction with RHA is necessary. Ribosomal profile analyses determined that RHA is necessary for polysome association of HTLV-1 gag and provide direct evidence that RHA is necessary for efficient HTLV-1 replication. We conclude that PCE/RHA is an important translation regulatory axis of multiple lymphotropic retroviruses. We speculate divergent retroviruses have evolved a convergent RNA–protein interaction to modulate translation of their highly structured mRNA.


international conference on image processing | 2003

Error concealment of video sequences by data hiding

Alper Yilmaz; A. Aydin Alatan

A complete error resilient video transmission codec is proposed, utilizing imperceptible embedded information for combined detecting, resynchronization and reconstruction of the errors and lost data. Utilization of data hiding for this problem provides a reserve information about the video to the receiver while unchanging the transmitted bit-stream syntax; hence, improves the reconstruction video quality without significant extra channel utilization. A spatial domain error recovery technique, which hides edge orientation information of a block, and a resynchronization technique, which embeds bit-length of a block into other blocks are combined, as well as some parity information about the hidden data, to conceal channel errors on intra-coded frames of a video sequence. The inter-coded frames are basically recovered by hiding motion vector information into the next frames. The simulation results show that the proposed approach performs superior to conventional approaches for concealing the errors in binary symmetric channels, especially for higher bit-rates and error-rates.


BMC Genomics | 2009

The word landscape of the non-coding segments of the Arabidopsis thaliana genome.

Jens Lichtenberg; Alper Yilmaz; Joshua D. Welch; Kyle Kurz; Xiaoyu Liang; Frank Drews; Klaus Ecker; Stephen S. Lee; Matt Geisler; Erich Grotewold; Lonnie R. Welch

BackgroundGenome sequences can be conceptualized as arrangements of motifs or words. The frequencies and positional distributions of these words within particular non-coding genomic segments provide important insights into how the words function in processes such as mRNA stability and regulation of gene expression.ResultsUsing an enumerative word discovery approach, we investigated the frequencies and positional distributions of all 65,536 different 8-letter words in the genome of Arabidopsis thaliana. Focusing on promoter regions, introns, and 3 and 5 untranslated regions (3UTRs and 5UTRs), we compared word frequencies in these segments to genome-wide frequencies. The statistically interesting words in each segment were clustered with similar words to generate motif logos. We investigated whether words were clustered at particular locations or were distributed randomly within each genomic segment, and we classified the words using gene expression information from public repositories. Finally, we investigated whether particular sets of words appeared together more frequently than others.ConclusionOur studies provide a detailed view of the word composition of several segments of the non-coding portion of the Arabidopsis genome. Each segment contains a unique word-based signature. The respective signatures consist of the sets of enriched words, unwords, and word pairs within a segment, as well as the preferential locations and functional classifications for the signature words. Additionally, the positional distributions of enriched words within the segments highlight possible functional elements, and the co-associations of words in promoter regions likely represent the formation of higher order regulatory modules. This work is an important step toward fully cataloguing the functional elements of the Arabidopsis genome.

Collaboration


Dive into the Alper Yilmaz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elham Pashaei

Yıldız Technical University

View shared research outputs
Top Co-Authors

Avatar

Nizamettin Aydin

Yıldız Technical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge