Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathleen Boris-Lawrie is active.

Publication


Featured researches published by Kathleen Boris-Lawrie.


Nature Structural & Molecular Biology | 2006

RNA helicase A is necessary for translation of selected messenger RNAs

Tiffiney Roberts Hartman; Shuiming Qian; Cheryl Bolinger; Soledad Fernandez; Daniel R. Schoenberg; Kathleen Boris-Lawrie

RNA helicase A (RHA) is a highly conserved DEAD-box protein that activates transcription, modulates RNA splicing and binds the nuclear pore complex. The life cycle of typical mRNA involves RNA processing and translation after ribosome scanning of a relatively unstructured 5′ untranslated region (UTR). The precursor RNAs of retroviruses and selected cellular genes harbor a complex 5′ UTR and use a yet-to-be-identified host post-transcriptional effector to stimulate efficient translation. Here we show that RHA recognizes a structured 5′-terminal post-transcriptional control element (PCE) of a retrovirus and the JUND growth-control gene. RHA interacts with PCE RNA in the nucleus and cytoplasm, facilitates polyribosome association and is necessary for its efficient translation. Our results reveal a previously unidentified role for RHA in translation and implicate RHA as an integrative effector in the continuum of gene expression from transcription to translation.


Journal of Virology | 2002

Destiny of unspliced retroviral RNA: ribosome and/or virion?

Melinda Butsch; Kathleen Boris-Lawrie

A longstanding unknown in viral RNA biology is the relationship between translation and packaging of genomic RNA. For retroviruses, an extensive body of work has characterized nuclear export of the unspliced genome-length transcript (5, 8, 15), but the cytoplasmic trafficking of the RNA has remained relatively undefined. An elegant experimental approach that was initiated over 25 years ago has been updated and extended to human retroviruses during the last year. A consensus on the relationship between translation and packaging of retroviral RNA has been reached. An unexpected finding was that retroviruses have adapted two divergent approaches to manage the cytoplasmic fate of genomic RNA. This minireview introduces the interdependent relationship between translation and packaging of retroviral RNA, postulates models of retroviral RNA trafficking in the cytoplasm, summarizes experimental results that address the models, and discusses the recent consensus.


Current Opinion in Genetics & Development | 1993

Recent advances in retrovirus vector technology

Kathleen Boris-Lawrie; Howard M. Temin

Retroviral vectors are widely used for the study of retroviral replication and to introduce DNA into somatic cells. An exciting new approach in retroviral vector technology is the use of internal ribosome entry sites from picornaviruses to provide stable expression of multiple genes. In addition, strategies are being developed that target the expression of retroviral vectors to specific cell populations.


Proceedings of the National Academy of Sciences of the United States of America | 2009

HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1

Shuiming Qian; Xuehua Zhong; Lianbo Yu; Biao Ding; Peter de Haan; Kathleen Boris-Lawrie

The RNA silencing pathway is an intracellular innate response to virus infections and retro-transposons. Many plant viruses counter this host restriction by RNA silencing suppressor (RSS) activity of a double-stranded RNA-binding protein, e.g., tomato bushy stunt virus P19. Here, we demonstrate P19 and HIV-1 Tat function across the plant and animal kingdoms and suppress a common step in RNA silencing that is downstream of small RNA maturation. Our experiments reveal that RNA silencing in HIV-1 infected human cells severely attenuates the translational output of the unspliced HIV-1 gag mRNA, and possibly all HIV-1 transcripts. The attenuation in gag mRNA translation is exacerbated by K51A substitution in the Tat double-stranded RNA-binding domain. Tat, plant virus RSS, or Dicer downregulation rescues robust gag translation and bolsters HIV-1 virion production. The reversal of HIV-1 translation repression by plant RSS supports the recent finding in Arabidopsis that plant miRNAs operate by translational inhibition. Our results identify common features between RNA silencing suppression of plant and animal viruses. We suggest that RNA silencing-mediated translation repression plays a strategic role in determining the viral set-point in a newly HIV-1-infected patient.


Nucleic Acids Research | 2010

RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions

Cheryl Bolinger; Amit Sharma; Deepali Singh; Lianbo Yu; Kathleen Boris-Lawrie

Retroviruses rely on host RNA-binding proteins to modulate various steps in their replication. Previously several animal retroviruses were determined to mediate Dhx9/RNA helicase A (RHA) interaction with a 5′ terminal post-transcriptional control element (PCE) for efficient translation. Herein PCE reporter assays determined HTLV-1 and HIV-1 RU5 confer orientation-dependent PCE activity. The effect of Dhx9/RHA down-regulation and rescue with siRNA-resistant RHA on expression of HIV-1NL4–3 provirus determined that RHA is necessary for efficient HIV-1 RNA translation and requires ATPase-dependent helicase function. Quantitative analysis determined HIV-1 RNA steady-state and cytoplasmic accumulation were not reduced; rather the translational activity of viral RNA was reduced. Western blotting determined that RHA-deficient virions assemble with Lys-tRNA synthetase, exhibit processed reverse transcriptase and contain similar level of viral RNA, but they are poorly infectious on primary lymphocytes and HeLa cells. The results demonstrate RHA is an important host factor within the virus-producer cell and within the viral particle. The identification of RHA-dependent PCE activity in cellular junD RNA and in six of seven genera of Retroviridae suggests conservation of this translational control mechanism among vertebrates, and convergent evolution of Retroviridae to utilize this host mechanism.


Oncogene | 2008

Multiple facets of junD gene expression are atypical among AP-1 family members

Jm Hernandez; Desiree H. Floyd; Katherine N. Weilbaecher; Patrick L. Green; Kathleen Boris-Lawrie

JunD is a versatile AP-1 transcription factor that can activate or repress a diverse collection of target genes. Precise control of junD expression and JunD protein–protein interactions modulate tumor angiogenesis, cellular differentiation, proliferation and apoptosis. Molecular and clinical knowledge of two decades has revealed that precise JunD activity is elaborated by interrelated layers of constitutive transcriptional control, complex post-transcriptional regulation and a collection of post-translational modifications and protein–protein interactions. The stakes are high, as inappropriate JunD activity contributes to neoplastic, metabolic and viral diseases. This article deconvolutes multiple layers of control that safeguard junD gene expression and functional activity. The activity of JunD in transcriptional activation and repression is integrated into a regulatory network by which JunD exerts a pivotal role in cellular growth control. Our discussion of the JunD regulatory network integrates important open issues and posits new therapeutic targets for the neoplastic, metabolic and viral diseases associated with JunD/AP-1 expression.


Journal of Virology | 2006

Tertiary Structural and Functional Analyses of a Viroid RNA Motif by Isostericity Matrix and Mutagenesis Reveal Its Essential Role in Replication

Xuehua Zhong; Neocles B. Leontis; Shuiming Qian; Asuka Itaya; Yijun Qi; Kathleen Boris-Lawrie; Biao Ding

ABSTRACT RNA-templated RNA replication is essential for viral or viroid infection, as well as for regulation of cellular gene expression. Specific RNA motifs likely regulate various aspects of this replication. Viroids of the Pospiviroidae family, as represented by the Potato spindle tuber viroid (PSTVd), replicate in the nucleus by utilizing DNA-dependent RNA polymerase II. We investigated the role of the loop E (sarcin/ricin) motif of the PSTVd genomic RNA in replication. A tertiary-structural model of this motif, inferred by comparative sequence analysis and comparison with nuclear magnetic resonance and X-ray crystal structures of loop E motifs in other RNAs, is presented in which core non-Watson-Crick base pairs are precisely specified. Isostericity matrix analysis of these base pairs showed that the model accounts for the reported natural sequence variations and viable experimental mutations in loop E motifs of PSTVd and other viroids. Furthermore, isostericity matrix analysis allowed us to design disruptive, as well as compensatory, mutations of PSTVd loop E. Functional analyses of such mutants by in vitro and in vivo experiments demonstrated that loop E structural integrity is crucial for replication, specifically during transcription. Our results suggest that the PSTVd loop E motif exists and functions in vivo and provide loss-of-function genetic evidence for the essential role of a viroid RNA three-dimensional motif in rolling-circle replication. The use of isostericity matrix analysis of non-Watson-Crick base pairing to rationalize mutagenesis of tertiary motifs and systematic in vitro and in vivo functional assays of mutants offers a novel, comprehensive approach to elucidate the tertiary-structure-function relationships for RNA motifs of general biological significance.


Nucleic Acids Research | 2011

Evidence that Lin28 stimulates translation by recruiting RNA helicase A to polysomes

Jianyu Jin; Wei Jing; Xinxiang Lei; Chen Feng; Shuping Peng; Kathleen Boris-Lawrie; Yingqun Huang

The stem cell protein Lin28 functions to inhibit the biogenesis of a group of miRNAs but also stimulates the expression of a subset of mRNAs at the post-transcriptional level, the underlying mechanism of which is not yet understood. Here we report the characterization of the molecular interplay between Lin28 and RNA helicase A (RHA) known to play an important role in remodeling ribonucleoprotein particles during translation. We show that reducing Lin28 expression results in decreased RHA association with polysomes while increasing Lin28 expression leads to elevated RHA association. Further, the carboxyl terminus of Lin28 is necessary for interaction with both the amino and carboxyl termini of RHA. Importantly, a carboxyl terminal deletion mutant of Lin28 that retains RNA-binding activity fails to interact with RHA and exhibits dominant-negative effects on Lin28-dependent stimulation of translation. Taken together, these results lead us to suggest that Lin28 may stimulate translation by actively recruiting RHA to polysomes.


Journal of Virology | 2000

Translation Is Not Required To Generate Virion Precursor RNA in Human Immunodeficiency Virus Type 1-Infected T Cells

Melinda Butsch; Kathleen Boris-Lawrie

ABSTRACT The retroviral primary transcription product is a multifunctional RNA that is utilized as pre-mRNA, mRNA, and genomic RNA. The relationship between human immunodeficiency virus type 1 (HIV-1) unspliced transcripts used as mRNA for viral protein synthesis and as virion precursor RNA (vpRNA) for encapsidation remains an important question. We developed a biochemical assay to evaluate the hypothesis that prior utilization as mRNA template for protein synthesis is necessary to generate vpRNA. HIV-1-infected T cells were treated with translation inhibitors under conditions that maintain virus production. Immunoprecipitation of newly synthesized HIV-1 Gag protein revealed that de novo translation is not necessary to sustain assembly, release, or processing of Gag structural protein. Both newly synthesized protein and steady-state Gag are competent for assembly, and the extracellular accumulation of Gag is proportional to the intracellular abundance of Gag. As early as 2 h after transcription, newly synthesized RNA is detectable in cell-free virions and encapsidation is sustained upon inhibition of host cell translation. Results of both [3H]uridine incorporation assays and HIV-1-specific RNase protection assays (RPAs) indicate that translation inhibition reduces the absolute amounts of both cytoplasmic and virion-associated RNA. Evaluation of encapsidation efficiency by RPA revealed that the cytoplasmic availability of vpRNA is increased, indicating that HIV-1 unspliced mRNA can be rerouted to function as vpRNA. Our data contrast with results from the HIV-2 and murine leukemia virus systems and indicate that HIV-1 unspliced RNA constitutes a single functional pool that can function interchangeably as mRNA and as vpRNA.


Retrovirology | 2011

Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1.

Amy M. Hayes; Shuiming Qian; Lianbo Yu; Kathleen Boris-Lawrie

BackgroundMicroRNA (miRNA)-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1.ResultsHerein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1NL4-3 or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution) or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs.ConclusionsOur study identified miRNA expression changes attributable to Tat RSS activity in HIV-1NL4-3. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured lymphocytes as a tractable model to investigate interplay between HIV-1 and host RNA silencing. The subset of miRNA determined to be perturbed by Tat RSS in HIV-1 infection provides a focal point to define the gene networks that shape the cellular environment for HIV-1 replication.

Collaboration


Dive into the Kathleen Boris-Lawrie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuiming Qian

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gatikrushna Singh

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Deepali Singh

Gautam Buddha University

View shared research outputs
Top Co-Authors

Avatar

Howard M. Temin

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge