Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alvaro Aytes is active.

Publication


Featured researches published by Alvaro Aytes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing

Sonia A. Melo; Alberto Villanueva; Catia Moutinho; Veronica Davalos; Riccardo Spizzo; Cristina Ivan; Simona Rossi; Fernando Setien; Oriol Casanovas; Laia Simó-Riudalbas; Javier Carmona; Jordi Carrère; August Vidal; Alvaro Aytes; Sara Puertas; Santiago Ropero; Raghu Kalluri; Carlo M. Croce; George A. Calin; Manel Esteller

MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression at the posttranscriptional level and are critical for many cellular pathways. The disruption of miRNAs and their processing machineries also contributes to the development of human tumors. A common scenario for miRNA expression in carcinogenesis is emerging that shows that impaired miRNA production and/or down-regulation of these transcripts occurs in many neoplasms. Several of these lost miRNAs have tumor-suppressor features, so strategies to restore their expression globally in malignancies would be a welcome addition to the current therapeutic arsenal against cancer. Herein, we show that the small molecule enoxacin, a fluoroquinolone used as an antibacterial compound, enhances the production of miRNAs with tumor suppressor functions by binding to the miRNA biosynthesis protein TAR RNA-binding protein 2 (TRBP). The use of enoxacin in human cell cultures and xenografted, orthotopic, and metastatic mouse models reveals a TRBP-dependent and cancer-specific growth-inhibitory effect of the drug. These results highlight the key role of disrupted miRNA expression patterns in tumorigenesis, and suggest a unique strategy for restoring the distorted microRNAome of cancer cells to a more physiological setting.


Cancer Cell | 2014

Cross-Species Regulatory Network Analysis Identifies a Synergistic Interaction between FOXM1 and CENPF that Drives Prostate Cancer Malignancy

Alvaro Aytes; Antonina Mitrofanova; Celine Lefebvre; Mariano J. Alvarez; Mireia Castillo-Martin; Tian Zheng; James A. Eastham; Anuradha Gopalan; Kenneth J. Pienta; Michael M. Shen; Cory Abate-Shen

To identify regulatory drivers of prostate cancer malignancy, we have assembled genome-wide regulatory networks (interactomes) for human and mouse prostate cancer from expression profiles of human tumors and of genetically engineered mouse models, respectively. Cross-species computational analysis of these interactomes has identified FOXM1 and CENPF as synergistic master regulators of prostate cancer malignancy. Experimental validation shows that FOXM1 and CENPF function synergistically to promote tumor growth by coordinated regulation of target gene expression and activation of key signaling pathways associated with prostate cancer malignancy. Furthermore, co-expression of FOXM1 and CENPF is a robust prognostic indicator of poor survival and metastasis. Thus, genome-wide cross-species interrogation of regulatory networks represents a valuable strategy to identify causal mechanisms of human cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Nuclear IKK activity leads to dysregulated Notch-dependent gene expression in colorectal cancer

Vanessa Fernández-Majada; C. Aguilera; Alberto Villanueva; F. Vilardell; Àlex Robert-Moreno; Alvaro Aytes; F. X. Real; Gabriel Capellá; Marty W. Mayo; Lluis Espinosa; Anna Bigas

Nuclear functions for IκB kinase (IKK), including phosphorylation of histone H3 and nuclear corepressors, have been recently described. Here, we show that IKK is activated in colorectal tumors concomitant with the presence of phosphorylated SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) corepressor that is aberrantly localized in the cytoplasm. In these tumors, IKKα associates to the chromatin of specific Notch targets, leading to the release of SMRT. Abrogation of IKK activity by BAY11-7082 or by expressing dominant negative IKKα restores the association of SMRT with Notch target genes, resulting in specific gene repression. Finally, BAY11-7082 significantly reduces tumor size in colorectal cancer xenografts (CRC-Xs) implanted in nude mice.


Science Translational Medicine | 2013

A Molecular Signature Predictive of Indolent Prostate Cancer

Shazia Irshad; Mukesh Bansal; Mireia Castillo-Martin; Tian Zheng; Alvaro Aytes; Sven Wenske; Clémentine Le Magnen; Paolo Guarnieri; Pavel Sumazin; Mitchell C. Benson; Michael M. Shen; Cory Abate-Shen

A three-gene panel derived from mechanistic models of cell senescence predicts outcome of low Gleason score prostate tumors. To Treat or Not to Treat...* ...That is often the question for prostate cancer patients and their caretakers. Now, Irshad et al. describe a gene signature that may guide treatment choices when prognosis is unclear. Along with other clinical and molecular parameters, pathologists use the Gleason grading system to stage prostate cancers and predict patient prognosis. A Gleason score is assigned to a cancer on the basis of its microscopic features and is directly related to tumor aggressiveness and poor prognosis. Most newly diagnosed prostate cancers with low Gleason scores require no treatment intervention and are monitored with active surveillance (indolent tumors). However, the pinpointing of tumors that are aggressive and lethal despite having low Gleason scores is a clinical challenge. In these cases, new tools are needed to answer the title question. Irshad and colleagues show that low Gleason score prostate tumors can be separated into distinct indolent and aggressive subgroups on the basis of their expression of aging and senescence genes. Using patient tissue samples and gene expression data along with computational biology techniques, including a decision tree learning model, the authors identified three genes—FGFR1, PMP22, and CDKN1A—that predicted the clinical outcome of low Gleason score prostate tumors. The prognostic power of the three-gene signature was validated in independent patient cohorts, and expression of the FGFR1, PMP22, and CDKN1A proteins in biopsy samples identified Gleason 6 patients who had failed surveillance over a 10-year period. Just as Hamlet laments in his famous soliloquy, oncologists and patients need more information about the unknown before making a decision. The new signature might aid in the choice between “bear[ing] those ills [they] have” with active surveillance or actively treating—and hopefully thwarting—aggressive tumors. *Paraphrased from the “To be, or not to be” soliloquy in Hamlet by William Shakespeare. Many newly diagnosed prostate cancers present as low Gleason score tumors that require no treatment intervention. Distinguishing the many indolent tumors from the minority of lethal ones remains a major clinical challenge. We now show that low Gleason score prostate tumors can be distinguished as indolent and aggressive subgroups on the basis of their expression of genes associated with aging and senescence. Using gene set enrichment analysis, we identified a 19-gene signature enriched in indolent prostate tumors. We then further classified this signature with a decision tree learning model to identify three genes—FGFR1, PMP22, and CDKN1A—that together accurately predicted outcome of low Gleason score tumors. Validation of this three-gene panel on independent cohorts confirmed its independent prognostic value as well as its ability to improve prognosis with currently used clinical nomograms. Furthermore, protein expression of this three-gene panel in biopsy samples distinguished Gleason 6 patients who failed surveillance over a 10-year period. We propose that this signature may be incorporated into prognostic assays for monitoring patients on active surveillance to facilitate appropriate courses of treatment.


Cancer Research | 2012

B-Raf Activation Cooperates with PTEN Loss to Drive c-Myc Expression in Advanced Prostate Cancer

Jingqiang Wang; Takashi Kobayashi; Nicolas Floc'h; Carolyn Waugh Kinkade; Alvaro Aytes; David Dankort; Celine Lefebvre; Antonina Mitrofanova; Robert D. Cardiff; Martin McMahon; Michael M. Shen; Cory Abate-Shen

Both the PI3K → Akt → mTOR and mitogen-activated protein kinase (MAPK) signaling pathways are often deregulated in prostate tumors with poor prognosis. Here we describe a new genetically engineered mouse model of prostate cancer in which PI3K-Akt-mTOR signaling is activated by inducible disruption of PTEN, and extracellular signal-regulated kinase 1/2 (ERK1/2) MAPK signaling is activated by inducible expression of a BRAF(V600E) oncogene. These tissue-specific compound mutant mice develop lethal prostate tumors that are inherently resistant to castration. These tumors bypass cellular senescence and disseminate to lymph nodes, bone marrow, and lungs where they form overt metastases in approximately 30% of the cases. Activation of PI3K → Akt → mTOR and MAPK signaling pathways in these prostate tumors cooperate to upregulate c-Myc. Accordingly, therapeutic treatments with rapamycin and PD0325901 to target these pathways, respectively, attenuate c-Myc levels and reduce tumor and metastatic burden. Together, our findings suggest a generalized therapeutic approach to target c-Myc activation in prostate cancer by combinatorial targeting of the PI3K → Akt → mTOR and ERK1/2 MAPK signaling pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2013

ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer

Alvaro Aytes; Antonina Mitrofanova; Carolyn Waugh Kinkade; Celine Lefebvre; Ming Lei; Vanessa V. Phelan; H. Carl Lekaye; Jason A. Koutcher; Robert D. Cardiff; Michael M. Shen; Cory Abate-Shen

Significance Although locally invasive prostate cancer is nearly always curable, metastatic prostate cancer usually results in lethality. Our study investigates the temporal progression and molecular mechanisms underlying prostate cancer metastasis using a new genetically engineered mouse model. Using lineage-tracing analyses, we show that dissemination of tumor cells occurs early in cancer progression, and well before the occurrence of metastases. We further show that metastasis is temporally coincident with expression of the oncogenic ETS gene Etv4, and that Etv4 promotes prostate cancer metastasis in vivo. Our findings suggest that Etv4 may be a target for therapeutic intervention in metastatic prostate cancer. Combinatorial activation of PI3-kinase and RAS signaling occurs frequently in advanced prostate cancer and is associated with adverse patient outcome. We now report that the oncogenic Ets variant 4 (Etv4) promotes prostate cancer metastasis in response to coactivation of PI3-kinase and Ras signaling pathways in a genetically engineered mouse model of highly penetrant, metastatic prostate cancer. Using an inducible Cre driver to simultaneously inactivate Pten while activating oncogenic Kras and a fluorescent reporter allele in the prostate epithelium, we performed lineage tracing in vivo to define the temporal and spatial occurrence of prostate tumors, disseminated tumor cells, and metastases. These analyses revealed that though disseminated tumors cells arise early following the initial occurrence of prostate tumors, there is a significant temporal lag in metastasis, which is temporally coincident with the up-regulation of Etv4 expression in primary tumors. Functional studies showed that knockdown of Etv4 in a metastatic cell line derived from the mouse model abrogates the metastatic phenotype but does not affect tumor growth. Notably, expression and activation of ETV4, but not other oncogenic ETS genes, is correlated with activation of both PI3-kinase and Ras signaling in human prostate tumors and metastases. Our findings indicate that ETV4 promotes metastasis in prostate tumors that have activation of PI3-kinase and Ras signaling, and therefore, ETV4 represents a potential target of therapeutic intervention for metastatic prostate cancer.


Cancer Research | 2012

Dual targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model

Nicolas Floc'h; Carolyn Waugh Kinkade; Takashi Kobayashi; Alvaro Aytes; Celine Lefebvre; Antonina Mitrofanova; Robert D. Cardiff; Michael M. Shen; Cory Abate-Shen

Although the prognosis for clinically localized prostate cancer is now favorable, there are still no curative treatments for castration-resistant prostate cancer (CRPC) and, therefore, it remains fatal. In this study, we investigate a new therapeutic approach for treatment of CRPC, which involves dual targeting of a major signaling pathway that is frequently deregulated in the disease. We found that dual targeting of the Akt and mTOR signaling pathways with their respective inhibitors, MK-2206 and ridaforolimus (MK-8669), is highly effective for inhibiting CRPC in preclinical studies in vivo using a refined genetically engineered mouse model of the disease. The efficacy of the combination treatment contrasts with their limited efficacy as single agents, since delivery of MK-2206 or MK-8669 individually had a modest impact in vivo on the overall tumor phenotype. In human prostate cancer cell lines, although not in the mouse model, the synergistic actions of MK-2206 and ridaforolimus (MK-8669) are due in part to limiting the mTORC2 feedback activation of Akt. Moreover, the effects of these drugs are mediated by inhibition of cellular proliferation via the retinoblastoma (Rb) pathway. Our findings suggest that dual targeting of the Akt and mTOR signaling pathways using MK-2206 and ridaforolimus (MK-8669) may be effective for treatment of CRPC, particularly for patients with deregulated Rb pathway activity.


Molecular Carcinogenesis | 2012

Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype

Alvaro Aytes; David G. Molleví; María Martínez-Iniesta; Marga Nadal; August Vidal; Albert Morales; Ramon Salazar; Gabriel Capellá; Alberto Villanueva

Allelic imbalances at chromosome 4p have been largely documented in many different tumor types. In colorectal cancer, loss of heterozygosity (LOH) at 4p15 has been associated with tumor aggressiveness and poor patient outcome, however no target genes in the region have been identified to date. Since stromal interaction molecule 2 (STIM2) is located at 4p15.2 and has been proposed as a candidate gene for this region in glioblastoma multiforme, we aimed at investigating the role of STIM2 in colorectal cancer. We studied STIM2 transcript expression levels in a collection of xenografted primary colorectal tumors (n = 20) and a well‐annotated tumor series of colorectal cancer (n = 140). We observed an overexpression of STIM2 in 63.5% of the cases that was associated with a less invasive phenotype. In vitro and in vivo functional studies with colon cancer cell lines revealed that overexpression of STIM2 reduced cell proliferation and tumor growth, respectively. Our work presents several lines of evidence indicating that STIM2 overexpression is a frequent trait in colorectal cancer that results in cell growth suppression, certifying that even in the absence of somatic genetic or epigenetic alterations, recurrent regions of LOH should still be considered a hallmark for the presence of relevant genes for tumorigenesis.


British Journal of Cancer | 2008

PRL-3 is essentially overexpressed in primary colorectal tumours and associates with tumour aggressiveness.

David G. Molleví; Alvaro Aytes; Laura Padullés; María Martínez-Iniesta; N Baixeras; Ramon Salazar; E Ramos; J Figueras; Gabriel Capellá; Alberto Villanueva

Phosphatase PRL-3 has been involved in different types of cancer, especially in metastases from colorectal carcinoma (CRC). In this study, we explored both isoforms of PRL-3 as a biomarker to predict the recurrence of stage IIIB-C CRC. Overexpression of PRL-3 was investigated in primary human colorectal tumours (n=20) and hepatic metastases (n=36) xenografted in nude mice, samples characterised by absence of human non-tumoral cells, showing a high degree of expression in metastases (P=0.001). In 27 cases of matched normal colonic mucosa/primary tumour/hepatic metastases, PRL-3 overexpression occurs in primary tumours vs normal mucosa (P=0.001) and in hepatic metastases vs primary tumours (P=0.045). Besides, our results in a series of 80 stage IIIB-C CRC primary tumours showed that high levels of PRL-3 were an independent predictor of metastasis (P<0.0001; OR: 9.791) in multivariate analysis of a binary logistic regression and that PRL-3 expression tightly correlates with parameters of bad outcome. Moreover, PRL-3 expression associated with poor outcome in univariate (P<0.0001) and multivariate Cox models (hazard ratio: 3.322, 95%, confidence interval: 1.405–7.852, P=0.006). In conclusion, PRL-3 is a good marker of aggressiveness of locally advanced CRS and a promising predictor of distant metastases. Nevertheless, for prognosis purposes, it is imperative to validate the cutoff value of PRL-3 expression in a larger and consecutive series and adjuvant setting.


Molecular Cancer | 2009

PRL-3 overexpression in epithelial cells is induced by surrounding stromal fibroblasts

David G. Molleví; Alvaro Aytes; Mireia Berdiel; Laura Padullés; María Martínez-Iniesta; Xavier Sanjuan; Ramon Salazar; Alberto Villanueva

We isolate and culture carcinoma-associated fibroblasts (CAFs) from primary tumour (CAFpt), CAFs from corresponding synchronous liver metastasis (CAFlm) as well as normal colonic fibroblasts (NCF) from the same patient. From these cultures, conditioned media (CM) was obtained. Culture of a wide panel of colorectal and pancreatic cell lines in CM from CAFlm resulted in overexpression of mRNA PRL-3 and higher overexpression in CAFs than in non-activated fibroblasts. Moreover PRL-3 mRNA expression correlates with expression of α-SMA and deposition of collagen fibrils in the stroma. We demonstrate that products secreted by CAFs trigger PRL-3 overexpression in cancer cells. Identification of these factors may contribute to new stroma-targeted therapies for desmoplastic tumours.

Collaboration


Dive into the Alvaro Aytes's collaboration.

Top Co-Authors

Avatar

Cory Abate-Shen

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael M. Shen

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mireia Castillo-Martin

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

August Vidal

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge